
Control System Toolbox 8
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Control System Toolbox User’s Guide

© COPYRIGHT 2001–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2001 Online only New for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)

Contents

LTI Models

1
Linear, Time-Invariant Models . 1-2

Supported Model Types . 1-2
LTI Model Formats . 1-2
Examples of Creating LTI Models . 1-3
Using LTI Models . 1-6
LTI Objects . 1-7
Precedence Rules . 1-8
Viewing LTI Systems as Matrices . 1-9
LTI Command Summary . 1-10

Creating LTI Models . 1-12
Transfer Function Models . 1-12
Zero-Pole-Gain Models . 1-16
State-Space Models . 1-19
Descriptor State-Space Models . 1-21
Frequency Response Data (FRD) Models 1-22
Creating Discrete-Time Models . 1-24
Data Retrieval . 1-28

LTI Properties . 1-31
What are LTI Properties? . 1-31
Generic LTI Properties . 1-31
Model-Specific Properties . 1-33
Setting LTI Properties . 1-35
Accessing Property Values Using get 1-37
Direct Property Referencing Using Dot Notation 1-38
Additional Insight into LTI Properties 1-40

Model Conversion . 1-46
Available Model Formats . 1-46
Explicit Conversion . 1-46
Automatic Conversion . 1-47
Caution About Model Conversions . 1-48

v

Time Delays . 1-49
Supported Types of Delays . 1-49
Available Properties for Modeling Delays 1-50
Input and Output Delays . 1-50
Specifying I/O Delays in MIMO Models 1-53
Internal Delays . 1-55
Analyzing Systems With Delays . 1-58
Eliminating Time Delays: Padé Approximation 1-65
Sensitivity Analysis . 1-68
Specifying Delays in Discrete-Time Models 1-71
Discretization . 1-76
Functions That Support Internal Time Delays 1-78
Inside Time Delay Models . 1-79

Simulink Block for LTI Systems . 1-81

References . 1-83

Operations on LTI Models

2
Overview . 2-2

Precedence and Property Inheritance 2-3

Extracting and Modifying Subsystems 2-5
What is a Subsystem? . 2-5
Basic Subsystem Concepts . 2-5
Referencing FRD Models Through Frequencies 2-8
Referencing Channels by Name . 2-9
Resizing LTI Systems . 2-10

Arithmetic Operations on LTI Models 2-12
Supported Arithmetic Operations . 2-12
Addition and Subtraction . 2-12
Multiplication . 2-14
Inversion and Related Operations . 2-15
Transposition . 2-15

vi Contents

Pertransposition . 2-16

Model Interconnection Functions 2-17
Supported Interconnection Functions 2-17
Concatenation of LTI Models . 2-18
Feedback and Other Interconnection Functions 2-19

Continuous/Discrete Conversions of LTI Models 2-21
Supported Conversion Functions and Methods 2-21
Zero-Order Hold . 2-21
First-Order Hold . 2-23
Impulse Invariance . 2-24
Tustin Approximation . 2-27
Tustin with Frequency Prewarping 2-28
Matched Poles and Zeros . 2-28
Discretization of Systems with Delays 2-28

Resampling of Discrete-Time Models 2-31

References . 2-33

Model Analysis Tools

3
General Model Characteristics . 3-2

Model Dynamics . 3-4

State-Space Realizations . 3-7

Arrays of LTI Models

4
Concept of an LTI Array . 4-2

vii

What is an LTI Array? . 4-2
When to Use an LTI Array . 4-2
When to Collect a Set of Models in an LTI Array 4-3
Restrictions for LTI Models Collected in an Array 4-3
Where to Find Information on LTI Arrays 4-4
Visualizing LTI Arrays . 4-4
Higher Dimensional Arrays of LTI Models 4-6

Dimensions, Size, and Shape of an LTI Array 4-8
I/O and Array Dimensions of LTI Arrays 4-8
Accessing the Dimensions of an LTI Array Using size and

ndims . 4-10
Using reshape to Rearrange an LTI Array 4-12

Building LTI Arrays . 4-13
Ways to Build LTI Arrays . 4-13
Building LTI Arrays Using for Loops 4-13
Building LTI Arrays Using the stack Function 4-16
Building LTI Arrays Using tf, zpk, ss, and frd 4-18
Generating Random LTI Arrays Using rss 4-21

Indexing into LTI Arrays . 4-22
When to Index into LTI Arrays . 4-22
Organization of Indices . 4-22
Note on Indexing into LTI Arrays of FRD Models 4-23
Accessing Particular Models in an LTI Array 4-23
Extracting LTI Arrays of Subsystems 4-24
Reassigning Parts of an LTI Array . 4-25
Deleting Parts of an LTI Array . 4-26

Operations on LTI Arrays . 4-27
Supported Operations on LTI Arrays 4-27
Example: Addition of Two LTI Arrays 4-28
Dimension Requirements . 4-29
Special Cases for Operations on LTI Arrays 4-30
Other Operations on LTI Arrays . 4-32

viii Contents

Customization Preliminaries

5
Terminology . 5-2

The Property and Preferences Hierarchy 5-3

Setting Toolbox Preferences

6
Toolbox Preferences Editor . 6-2

Overview of the Toolbox Preferences Editor 6-2
Opening the Toolbox Preferences Editor 6-2

Units Pane . 6-4

Style Pane . 6-5

Options Pane . 6-6

SISO Tool Pane . 6-7

Setting Tool Preferences

7
Introduction . 7-2

LTI Viewer Preferences Editor . 7-3
Opening the LTI Viewer Preference Editor 7-3
Units Pane . 7-4
Style Pane . 7-4
Options Pane . 7-5
Parameters Pane . 7-6

ix

Graphical Tuning Window Preferences Editor 7-8
Opening the Graphical Tuning Window Preferences

Editor . 7-8
Units Pane . 7-9
Style Pane . 7-9
Options Pane . 7-12
Line Colors Pane . 7-13

Customizing Response Plot Properties

8
Introduction . 8-2

Response Plots Property Editor . 8-4
Overview of Response Plots Property Editor 8-4
Labels Pane . 8-5
Limits Pane . 8-6
Units Pane . 8-7
Style Pane . 8-8
Options Pane . 8-9

Property Editing for Subplots . 8-11

Customizing Plots Inside the SISO Design Tool 8-12
Overview of Customizing SISO Design Tool Plots 8-12
Root Locus Property Editor . 8-12
Open-Loop Bode Property Editor . 8-16
Open-Loop Nichols Property Editor 8-18
Prefilter Bode Property Editor . 8-20

Customizing Plots from the Command Line

9
Ways to Customize Plots . 9-2

x Contents

Using Plot and Plot Options Handles 9-3

Obtaining Plot Handles . 9-6

Obtaining Plot Options Handles . 9-7
Overview of Plot Options Handles . 9-7
Retrieving a Handle . 9-7
Creating a Handle . 9-7
Which Properties Can You Modify? 9-8

Examples of Customizing Plots from the Command
Line . 9-11
Manipulating Plot Options Handles 9-11
Changing Plot Units . 9-11
Create Plots Using Existing Plot Options Handle 9-12
Creating a Default Plot Options Handle 9-13
Using Dot Notation Like a Structure 9-13
Setting Property Pairs in setoptions 9-14

Properties and Values Reference . 9-15
Property/Value Pairs Common to All Response Plots 9-15
Bode Plots . 9-20
Hankel Singular Values . 9-21
Nichols Plots . 9-21
Nyquist Charts . 9-22
Pole/Zero Maps . 9-22
Sigma Plots . 9-22
Time Response Plots . 9-23

Property Organization Reference 9-24

Design Case Studies

10
Yaw Damper for a 747 Jet Transport 10-2

Overview of this Case Study . 10-2
Creating the Jet Model . 10-2
Computing Open-Loop Eigenvalues 10-4

xi

Open-Loop Analysis . 10-5
Root Locus Design . 10-8
Washout Filter Design . 10-13

Hard-Disk Read/Write Head Controller 10-19
Overview of this Case Study . 10-19
Creating the Read/Write Head Model 10-19
Model Discretization . 10-20
Adding a Compensator Gain . 10-22
Adding a Lead Network . 10-23
Design Analysis . 10-26

LQG Regulation: Rolling Mill Example 10-30
Overview of this Case Study . 10-30
Process and Disturbance Models . 10-30
LQG Design for the x-Axis . 10-34
LQG Design for the y-Axis . 10-40
Cross-Coupling Between Axes . 10-42
MIMO LQG Design . 10-45

Kalman Filtering . 10-49
Overview of this Case Study . 10-49
Discrete Kalman Filter . 10-50
Steady-State Design . 10-51
Time-Varying Kalman Filter . 10-57
Time-Varying Design . 10-58
References . 10-61

Reliable Computations

11
Introduction . 11-2

Requirements for Obtaining a Numerically Accurate
Answer . 11-2

When You Can Accurately Use Unreliable Tools 11-3

Conditioning and Numerical Stability 11-4
Conditioning . 11-4
Numerical Stability . 11-6

xii Contents

Choice of LTI Model . 11-8
Computational Reliability of Different Model Types 11-8
State Space . 11-8
Transfer Function . 11-9
Zero-Pole-Gain Models . 11-14

Scaling . 11-15

Summary . 11-17

References . 11-18

SISO Design Tool

12
Overview of the SISO Design Tool 12-2

Opening the SISO Design Tool . 12-3

Using the SISO Design Task Node 12-4
The SISO Design Task Node . 12-4
SISO Design Task Node Menu Bar 12-5

Using the SISO Design Task in the Controls &
Estimation Tools Manager . 12-11
Architecture . 12-11
Compensator Editor . 12-18
Graphical Tuning . 12-19
Analysis Plots . 12-22
Automated Tuning . 12-24

SISO Design Task Graphical Tuning Window 12-41

Using the Graphical Tuning Window Menu Bar 12-42
Overview of the Graphical Tuning Window Menu Bar 12-42
File . 12-42
Edit . 12-45

xiii

View . 12-45
Analysis . 12-47
Tools . 12-48
Window . 12-51
Help . 12-51

Using the Graphical Tuning Window Toolbar 12-53

Using the Right-Click Menus in the Graphical Tuning
Window . 12-54
Overview of the Right-Click Menus 12-54
Add Pole/Zero . 12-55
Delete Pole/Zero . 12-58
Edit Compensator . 12-58
Gain Target . 12-58
Show . 12-58
Design Requirements . 12-59
Grid . 12-71
Full View . 12-71
Properties . 12-72
Select Compensator . 12-73
Status Pane . 12-73

LTI Viewer for SISO Design Task Design
Requirements . 12-74
Overview of LTI Viewer Design Requirements 12-74
Available Design Requirements in the LTI Viewer 12-74
Example: Time Domain Requirement 12-75

LTI Viewer

13
Basic LTI Viewer Tasks . 13-2

Using the Right-Click Menu in the LTI Viewer 13-4
Overview of the Right-Click Menu . 13-4
Setting Characteristics of Response Plots 13-4
Adding Design Requirements . 13-9

xiv Contents

Importing, Exporting, and Deleting Models in the LTI
Viewer . 13-12
Importing Models . 13-12
Exporting Models . 13-13
Deleting Models . 13-14

Selecting Response Types . 13-16
Methods for Selecting Response Types 13-16
Right Click Menu: Plot Type . 13-16
Plot Configurations Window . 13-16
Line Styles Editor . 13-18

Analyzing MIMO Models . 13-20
Overview of Analyzing MIMO Models 13-20
Array Selector . 13-21
I/O Grouping for MIMO Models . 13-23
Selecting I/O Pairs . 13-24

Customizing the LTI Viewer . 13-25
Overview of Customizing the LTI Viewer 13-25
LTI Viewer Preferences Editor . 13-25

Index

xv

xvi Contents

1

LTI Models

Linear, Time-Invariant Models
(p. 1-2)

Introduces key concepts about the
MATLAB® representation of LTI
models

Creating LTI Models (p. 1-12) How to create LTI models in various
formats

LTI Properties (p. 1-31) Converting between LTI model
formats

Model Conversion (p. 1-46) Converting between LTI model
formats

Time Delays (p. 1-49) Creating and analyzing time delays
in LTI models

Simulink Block for LTI Systems
(p. 1-81)

Describes the LTI System block, a
Simulink® block that you can use to
import models into Simulink

References (p. 1-83) Relevant control theory literature

1 LTI Models

Linear, Time-Invariant Models

In this section...

“Supported Model Types” on page 1-2

“LTI Model Formats” on page 1-2

“Examples of Creating LTI Models” on page 1-3

“Using LTI Models” on page 1-6

“LTI Objects” on page 1-7

“Precedence Rules” on page 1-8

“Viewing LTI Systems as Matrices” on page 1-9

“LTI Command Summary” on page 1-10

Supported Model Types
Control System Toolbox offers extensive tools to manipulate and analyze
linear time-invariant (LTI) models. It supports both continuous- and
discrete-time systems. Systems can be single-input/single-output (SISO) or
multiple-input/multiple-output (MIMO). In addition, you can store several
LTI models in an array under a single variable name. See Chapter 4, “Arrays
of LTI Models” for information on LTI arrays.

LTI Model Formats
You can specify LTI models as:

• Transfer functions (TF), for example,

• Zero-pole-gain models (ZPK), for example,

1-2

Linear, Time-Invariant Models

• State-space models (SS), for example,

where A, B, C, and D are matrices of appropriate dimensions, x is the state
vector, and u and y are the input and output vectors.

• Frequency response data (FRD) models

FRD models consist of sampled measurements of a system’s frequency
response. For example, you can store experimentally collected frequency
response data in an FRD.

Examples of Creating LTI Models
Building LTI models with Control System Toolbox is straightforward. The
following sections show simple examples. Note that all LTI models, including
TF, ZPK, SS, and FRD are also MATLAB objects. See MATLAB Classes and
Objects in the MATLAB documentation if you are not familiar with objects
and object syntax.

Example of Creating Transfer Function Models
You can create transfer function (TF) models by specifying numerator and
denominator coefficients. For example,

num = [1 0];
den = [1 2 1];
sys = tf(num,den)

Transfer function:
s

s^2 + 2 s + 1

A useful trick is to create the Laplace variable, s. That way, you can specify
polynomials using s as the polynomial variable.

s=tf('s');
sys= s/(s^2 + 2*s + 1)

1-3

1 LTI Models

Transfer function:
s

s^2 + 2 s + 1

This is identical to the previous transfer function.

Example of Creating Zero-Pole-Gain Models
To create zero-pole-gain (ZPK) models, you must specify each of the three
components in vector format. For example,

sys = zpk([0],[-1 -1],[1])

Zero/pole/gain:
s

(s+1)^2

produces the same transfer function built in the TF example, but the
representation is now ZPK.

This example shows a more complicated ZPK model.

sys=zpk([1 0], [-1 -3 -.28],[.776])

Zero/pole/gain:
0.776 s (s-1)

(s+1) (s+3) (s+0.28)

Example of Creating State-Space Models
To create a state-space model, specify the A, B, C, and D matrices.

A= [-1 0; 0 -1];
B= [1 ; 0];
C= eye(2);
D = zeros(2, 1);

1-4

Linear, Time-Invariant Models

sys=ss(A, B, C, D)

a =
x1 x2

x1 -1 0
x2 0 -1

b =
u1

x1 1
x2 0

c =
x1 x2

y1 1 0
y2 0 1

d =
u1

y1 0
y2 0

Continuous-time model.

You can verify that this example has two poles at -1.

sys_poles = eig(sys)

sys_poles =

-1
-1

1-5

1 LTI Models

Example of Creating Frequency Response Data Models
You can create a frequency response data (FRD) model using measured
data from your plant. The function frd requires at a minimum a column of
frequency responses and a column of associated frequencies. This example
creates FRD data and then builds the FRD model.

freq = logspace(1,2); % Create 50 points of data.
resp = .05*(freq).*exp(i*2*freq); % Create a response at each

%point.
sys = frd(resp,freq);

Type

sys

to see all the data in the FRD model. To check that sys is an FRD model,
you can use the size function.

size(sys)
FRD model with 1 output(s) and 1 input(s), at 50 frequency
point(s).

Since sys is an FRD object, as with any MATLAB object, you can access the
data using dot notation.

freq= sys.Frequency;
size(freq)

Using LTI Models
Once you have built LTI models, you can manipulate them using the
arithmetic and model interconnection operations described in Chapter 2,
“Operations on LTI Models” and analyze them using the model analysis
functions, such as bode and step. FRD models can be manipulated and
analyzed in much the same way you analyze the other model types, but
analysis is restricted to frequency-domain methods.

Using a variety of design techniques, you can design compensators for systems
specified with TF, ZPK, SS, and FRD models. These techniques include root
locus analysis, pole placement, LQG optimal control, and frequency domain
loop-shaping. For FRD models, you can either:

1-6

Linear, Time-Invariant Models

• Obtain an identified TF, SS, or ZPK model using system identification
techniques.

• Use frequency-domain analysis techniques.

Other Uses of FRD Models
FRD models are unique model types available in the Control System
Toolbox collection of LTI model types, in that they don’t have a parametric
representation. In addition to the standard operations you may perform on
FRD models, you can also use them to:

• Perform frequency-domain analysis on systems with nonlinearities using
describing functions.

• Validate identified models against experimental frequency response data.

LTI Objects
Depending on the type of model you use, the data for your model may consist
of a simple numerator/denominator pair for SISO transfer functions, four
matrices for state-space models, and multiple sets of zeros and poles for
MIMO zero-pole-gain models or frequency and response vectors for FRD
models. For convenience, Control System Toolbox provides customized data
structures (LTI objects) for each type of model. These are called the TF, ZPK,
SS, and FRD objects. These four LTI objects encapsulate the model data
and enable you to manipulate LTI systems as single entities rather than
collections of data vectors or matrices.

Creating an LTI Object: An Example
An LTI object of the type TF, ZPK, SS, or FRD is created whenever you invoke
the corresponding constructor function, tf, zpk, ss, or frd. For example,

P = tf([1 2],[1 1 10])

creates a TF object, P, that stores the numerator and denominator coefficients
of the transfer function

1-7

1 LTI Models

See “Creating LTI Models” on page 1-12 for methods for creating all of the
LTI object types.

LTI Properties and Methods
The LTI object implementation relies on MATLAB object-oriented
programming capabilities. Objects are MATLAB structures with an additional
flag indicating their class (TF, ZPK, SS, or FRD for LTI objects) and have
predefined fields called object properties. For LTI objects, these properties
include the model data, sample time, delay times, input or output names, and
input or output groups (see “LTI Properties” on page 1-31 for details). The
functions that operate on a particular object are called the object methods.
These may include customized versions of simple operations such as addition
or multiplication. For example,

P = tf([1 2],[1 1 10])
Q = 2 + P

performs transfer function addition.

The object-specific versions of such standard operations are called overloaded
operations. For more details on objects, methods, and object-oriented
programming, see Classes and Objects in the MATLAB documentation. For
details on operations on LTI objects, see Chapter 2, “Operations on LTI
Models”

Precedence Rules
Operations like addition and commands like feedback operate on more than
one LTI model at a time. If these LTI models are represented as LTI objects of
different types (for example, the first operand is TF and the second operand is
SS), it is not obvious what type (for example, TF or SS) the resulting model
should be. Such type conflicts are resolved by precedence rules. Specifically,
TF, ZPK, SS, and FRD objects are ranked according to the precedence
hierarchy.

1-8

Linear, Time-Invariant Models

Thus ZPK takes precedence over TF, SS takes precedence over both TF and
ZPK, and FRD takes precedence over all three. In other words, any operation
involving two or more LTI models produces:

• An FRD object if at least one operand is an FRD object

• An SS object if no operand is an FRD object and at least one operand
is an SS object

• A ZPK object if no operand is an FRD or SS object and at least one is an
ZPK object

• A TF object only if all operands are TF objects

Operations on systems of different types work as follows: the resulting type is
determined by the precedence rules, and all operands are first converted to
this type before performing the operation.

Viewing LTI Systems as Matrices
In the frequency domain, an LTI system is represented by the linear
input/output map

This map is characterized by its transfer matrix H, a function of either the
Laplace or Z-transform variable. The transfer matrix H maps inputs to
outputs, so there are as many columns as inputs and as many rows as outputs.

If you think of LTI systems in terms of (transfer) matrices, certain basic
operations on LTI systems are naturally expressed with a matrix-like syntax.
For example, the parallel connection of two LTI systems sys1 and sys2 can
be expressed as

sys = sys1 + sys2

because parallel connection amounts to adding the transfer matrices.
Similarly, subsystems of a given LTI model sys can be extracted using
matrix-like subscripting. For instance,

1-9

1 LTI Models

sys(3,1:2)

provides the I/O relation between the first two inputs (column indices) and
the third output (row index), which is consistent with

for .

LTI Command Summary
The next two tables list the commands you can apply to LTI models.

Creating LTI Models

Command Description

drss Generate random discrete state-space model.

dss Create descriptor state-space model.

filt Create discrete filter with DSP convention.

frd Create an FRD model.

frdata Retrieve FRD model data.

get Query LTI model properties.

set Set LTI model properties.

rss Generate random continuous state-space model.

ss Create a state-space model.

ssdata, dssdata Retrieve state-space data (respectively, descriptor
state-space data).

tf Create a transfer function.

tfdata Retrieve transfer function data.

1-10

Linear, Time-Invariant Models

Creating LTI Models (Continued)

Command Description

zpk Create a zero-pole-gain model.

zpkdata Retrieve zero-pole-gain data.

Converting LTI Models

Command Description

c2d Continuous- to discrete-time conversion.

d2c Discrete- to continuous-time conversion.

d2d Resampling of discrete-time models.

frd Conversion to an FRD model.

pade Padé approximation of input delays.

ss Conversion to state space.

tf Conversion to transfer function.

zpk Conversion to zero-pole-gain.

1-11

1 LTI Models

Creating LTI Models

In this section...

“Transfer Function Models” on page 1-12

“Zero-Pole-Gain Models” on page 1-16

“State-Space Models” on page 1-19

“Descriptor State-Space Models” on page 1-21

“Frequency Response Data (FRD) Models” on page 1-22

“Creating Discrete-Time Models” on page 1-24

“Data Retrieval” on page 1-28

Transfer Function Models
This section explains how to specify continuous-time SISO and MIMO transfer
function models. The specification of discrete-time transfer function models is
a simple extension of the continuous-time case (see “Creating Discrete-Time
Models” on page 1-24). In this section you can also read about how to specify
transfer functions consisting of pure gains.

SISO Transfer Function Models
A continuous-time SISO transfer function

is characterized by its numerator and denominator , both
polynomials of the Laplace variable s.

There are two ways to specify SISO transfer functions:

• Using the tf command

• As rational expressions in the Laplace variable s

To specify a SISO transfer function model using the tf
command, type

1-12

Creating LTI Models

h = tf(num,den)

where num and den are row vectors listing the coefficients of the polynomials
and , respectively, when these polynomials are ordered in descending

powers of s. The resulting variable h is a TF object containing the numerator
and denominator data.

For example, you can create the transfer function
by typing

h = tf([1 0],[1 2 10])

MATLAB responds with

Transfer function:
s

s^2 + 2 s + 10

Note the customized display used for TF objects.

You can also specify transfer functions as rational expressions in the Laplace
variable s by:

1 Defining the variable s as a special TF model

s = tf('s');

2 Entering your transfer function as a rational expression in s

For example, once s is defined with tf as in 1,

H = s/(s^2 + 2*s +10);

produces the same transfer function as

h = tf([1 0],[1 2 10]);

1-13

1 LTI Models

Note You need only define the variable s as a TF model once. All of the
subsequent models you create using rational expressions of s are specified as
TF objects, unless you convert the variable s to ZPK. See “Model Conversion”
on page 1-46 for more information.

MIMO Transfer Function Models
MIMO transfer functions are two-dimensional arrays of elementary SISO
transfer functions. There are several ways to specify MIMO transfer function
models, including:

• Concatenation of SISO transfer function models

• Using tf with cell array arguments

Consider the rational transfer matrix

.

You can specify by concatenation of its SISO entries. For instance,

h11 = tf([1 -1],[1 1]);
h21 = tf([1 2],[1 4 5]);

or, equivalently,

s = tf('s')
h11 = (s-1)/(s+1);
h21 = (s+2)/(s^2+4*s+5);

can be concatenated to form .

H = [h11; h21]

1-14

Creating LTI Models

This syntax mimics standard matrix concatenation and tends to be easier
and more readable for MIMO systems with many inputs and/or outputs.
See “Model Interconnection Functions” on page 2-17 for more details on
concatenation operations for LTI systems.

Alternatively, to define MIMO transfer functions using tf, you need two cell
arrays (say, N and D) to represent the sets of numerator and denominator
polynomials, respectively. See Structures and Cell Arrays in the MATLAB
documentation for more details on cell arrays.

For example, for the rational transfer matrix , the two cell arrays N and D
should contain the row-vector representations of the polynomial entries of

You can specify this MIMO transfer matrix by typing

N = {[1 -1];[1 2]}; % cell array for N(s)
D = {[1 1];[1 4 5]}; % cell array for D(s)
H = tf(N,D)

MATLAB responds with

Transfer function from input to output...
s - 1

#1: -----
s + 1

s + 2
#2: -------------

s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO
transfer matrix , the cell array entries N{i,j} and D{i,j} should be

row-vector representations of the numerator and denominator of , the
entry of the transfer matrix .

1-15

1 LTI Models

Pure Gains
You can use tf with only one argument to specify simple gains or gain
matrices as TF objects. For example,

G = tf([1 0;2 1])

produces the gain matrix

while

E = tf

creates an empty transfer function.

Zero-Pole-Gain Models
This section explains how to specify continuous-time SISO and MIMO
zero-pole-gain models. The specification for discrete-time zero-pole-gain
models is a simple extension of the continuous-time case. See “Creating
Discrete-Time Models” on page 1-24.

SISO Zero-Pole-Gain Models
Continuous-time SISO zero-pole-gain models are of the form

where is a real- or complex-valued scalar (the gain), and ,..., and
,..., are the real or complex conjugate pairs of zeros and poles of the

transfer function . This model is closely related to the transfer function
representation: the zeros are simply the numerator roots, and the poles, the
denominator roots.

There are two ways to specify SISO zero-pole-gain models:

1-16

Creating LTI Models

• Using the zpk command

• As rational expressions in the Laplace variable s

The syntax to specify ZPK models directly using zpk is

h = zpk(z,p,k)

where z and p are the vectors of zeros and poles, and k is the gain. This
produces a ZPK object h that encapsulates the z, p, and k data. For example,
typing

h = zpk(0, [1-i 1+i 2], -2)

produces

Zero/pole/gain:
-2 s

(s-2) (s^2 - 2s + 2)

You can also specify zero-pole-gain models as rational expressions in the
Laplace variable s by:

1 Defining the variable s as a ZPK model

s = zpk('s')

2 Entering the transfer function as a rational expression in s.

For example, once s is defined with zpk,

H = -2s/((s - 2)*(s^2 + 2*s + 2));

returns the same ZPK model as

h = zpk([0], [2 -1-i -1+i], -2);

1-17

1 LTI Models

Note You need only define the ZPK variable s once. All subsequent rational
expressions of s will be ZPK models, unless you convert the variable s to TF.
See “Model Conversion” on page 1-46 for more information on conversion
to other model types.

MIMO Zero-Pole-Gain Models
Just as with TF models, you can also specify a MIMO ZPK model by
concatenation of its SISO entries (see “Model Interconnection Functions”
on page 2-17).

You can also use the command zpk to specify MIMO ZPK models. The syntax
to create a p-by-m MIMO zero-pole-gain model using zpk is

H = zpk(Z,P,K)

where

• Z is the p-by-m cell array of zeros (Z{i,j} = zeros of)

• P is the p-by-m cell array of poles (P{i,j} = poles of)

• K is the p-by-m matrix of gains (K(i,j) = gain of)

For example, typing

Z = {[],-5;[1-i 1+i] []};

P = {0,[-1 -1];[1 2 3],[]};

K = [-1 3;2 0];

H = zpk(Z,P,K)

creates the two-input/two-output zero-pole-gain model

1-18

Creating LTI Models

Notice that you use [] as a place holder in Z (or P) when the corresponding
entry of has no zeros (or poles).

State-Space Models
State-space models rely on linear differential or difference equations to
describe the system dynamics. Continuous-time models are of the form

where x is the state vector and u and y are the input and output vectors.
Such models may arise from the equations of physics, from state-space
identification, or by state-space realization of the system transfer function.

Use the command ss to create state-space models

sys = ss(A,B,C,D)

For a model with Nx states, Ny outputs, and Nu inputs

• A is an Nx-by-Nx real- or complex-valued matrix.

• B is an Nx-by-Nu real- or complex-valued matrix.

• C is an Ny-by-Nx real- or complex-valued matrix.

• D is an Ny-by-Nu real- or complex-valued matrix.

This produces a SS object sys that stores the state-space matrices
. For models with a zero D matrix, you can use D = 0 (zero)

as a shorthand for a zero matrix of the appropriate dimensions.

1-19

1 LTI Models

As an illustration, consider the following simple model of an electric motor.

where is the angular displacement of the rotor and the driving current.
The relation between the input current and the angular velocity

is described by the state-space equations

where

This model is specified by typing

sys = ss([0 1;-5 -2],[0;3],[0 1],0)

to which MATLAB responds

a =
x1 x2

x1 0 1.00000
x2 -5.00000 -2.00000

b =
u1

x1 0
x2 3.00000

c =
x1 x2

y1 0 1.00000

1-20

Creating LTI Models

d =
u1

y1 0

In addition to the A, B, C, and D matrices, the display of state-space models
includes state names, input names, and output names. Default names (here,
x1, x2, u1, and y1) are displayed whenever you leave these unspecified. See
“LTI Properties” on page 1-31 for more information on how to specify state,
input, or output names.

Descriptor State-Space Models
Descriptor state-space (DSS) models are a generalization of the standard
state-space models discussed above. They are of the form

Control System Toolbox supports descriptor systems with a nonsingular
matrix. The function dss is the counterpart of ss for descriptor state-space
models. The syntax

sys = dss(A,B,C,D,E)

creates a continuous-time DSS model with matrix data A,B,C,D,E. For
example, consider the dynamic model

with vector of angular velocities. If the inertia matrix is poorly conditioned
with respect to inversion, you can specify this system as a descriptor model by

sys = dss(-F,eye(n),eye(n),0,J)
% n = length of vector

1-21

1 LTI Models

Frequency Response Data (FRD) Models
In some instances, you may only have sampled frequency response data,
rather than a transfer function or state-space model for the system you want
to analyze or control. For information on frequency response analysis of linear
systems, see Chapter 8 of [1][1].

For example, suppose the frequency response function for the SISO system
you want to model is G(w). Suppose, in addition, that you perform an
experiment to evaluate G(w) at a fixed set of frequencies, . You
can do this by driving the system with a sequence of sinusoids at each of
these frequencies, as depicted below.

Here is the input frequency of each sinusoid, i = 1 ... n, and G(w) =
. The steady state output response of this system

satisfies

A frequency response data (FRD) object is a model form you can use to
store frequency response data (complex frequency response, along with a
corresponding vector of frequency points) that you obtain either through
simulations or experimentally. In this example, the frequency response data
is obtained from the set of response pairs: .

Once you store your data in an FRD model, you can treat it as an LTI model,
and manipulate an FRD model in most of the same ways you manipulate TF,
SS, and ZPK models.

The basic syntax for creating a SISO FRD model is

1-22

Creating LTI Models

sys = frd(response,frequencies,units)

where

• frequencies is a real vector of length Nf.

• response is a vector of length Nf of complex frequency response values
for these frequencies.

• units is an optional string for the units of frequency: either ’rad/s’
(default) or ’Hz’

For example, the MAT-file LTIexamples.mat contains a frequency vector freq,
and a corresponding complex frequency response data vector respG. To load
this frequency-domain data and construct an FRD model, type

load LTIexamples
sys = frd(respG,freq)

Continuous-time frequency response with 1 output and 1 input
at 5 frequency points.

From input 1 to:
Frequency(rad/s) output 1
---------------- --------

1 -0.812505 -0.000312i
2 -0.092593 -0.462963i
4 -0.075781 -0.001625i
5 -0.043735 -0.000390i

The syntax for creating a MIMO FRD model is the same as for the SISO case,
except that response is a p-by-m-by-Nf multidimensional array, where p is
the number of outputs, m is the number of inputs, and Nf is the number of
frequency data points (the length of frequency).

The following table summarizes the complex-valued response data format
for FRD models.

1-23

1 LTI Models

Data Format for the Argument Response in FRD Models

Model Structure Response Data Format

SISO model Vector of length Nf for which response(i)
is the frequency response at the frequency
frequency(i)

MIMO model with Ny
outputs and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for
which response(i,j,k) specifies the frequency
response from input j to output i at frequency
frequency(k)

S1-by-...-by-Sn array of
models with Ny outputs
and Nu inputs

Ny-by-Nu-by-S1-by-...-by-Sn multidimensional
array, for which response(i,j,k,:) specifies
the array of frequency response data from input
j to output i at frequency frequency(k)

Creating Discrete-Time Models
Creating discrete-time models is very much like creating continuous-time
models, except that you must also specify a sampling period or sample time for
discrete-time models. The sample time value should be scalar and expressed
in seconds. You can also use the value -1 to leave the sample time unspecified.

To specify discrete-time LTI models using tf, zpk, ss, or frd, simply append
the desired sample time value Ts to the list of inputs.

sys1 = tf(num,den,Ts)
sys2 = zpk(z,p,k,Ts)
sys3 = ss(a,b,c,d,Ts)
sys4 = frd(response,frequency,Ts)

For example,

h = tf([1 -1],[1 -0.5],0.1)

creates the discrete-time transfer function with
sample time 0.1 seconds, and

sys = ss(A,B,C,D,0.5)

1-24

Creating LTI Models

specifies the discrete-time state-space model

with sampling period 0.5 second. The vectors denote the
values of the state, input, and output vectors at the nth sample.

By convention, the sample time of continuous-time models is Ts = 0. Setting
Ts = -1 leaves the sample time of a discrete-time model unspecified. For
example,

h = tf([1 -0.2],[1 0.3],-1)

produces

Transfer function:
z - 0.2

z + 0.3

Sampling time: unspecified

Note Do not simply omit Ts in this case. This would make h a continuous-time
transfer function.

If you forget to specify the sample time when creating your model, you can
still set it to the correct value by reassigning the LTI property Ts. See “Sample
Time” on page 1-40 for more information on setting this property.

Discrete-Time TF and ZPK Models
You can specify discrete-time TF and ZPK models using tf and zpk as
indicated above. Alternatively, it is often convenient to specify such models by:

1 Defining the variable z as a particular discrete-time TF or ZPK model with
the appropriate sample time

1-25

1 LTI Models

2 Entering your TF or ZPK model directly as a rational expression in z.

This approach parallels the procedure for specifying continuous-time TF or
ZPK models using rational expressions. This procedure is described in “SISO
Transfer Function Models” on page 1-12 and “SISO Zero-Pole-Gain Models”
on page 1-16.

For example,

z = tf('z', 0.1);
H = (z+2)/(z^2 + 0.6*z + 0.9);

creates the same TF model as

H = tf([1 2], [1 0.6 0.9], 0.1);

Similarly,

z = zpk('z', 0.1);
H = [z/(z+0.1)/(z+0.2) ; (z^2+0.2*z+0.1)/(z^2+0.2*z+0.01)]

produces the single-input, two-output ZPK model

Zero/pole/gain from input to output...
z

#1: ---------------
(z+0.1) (z+0.2)

(z^2 + 0.2z + 0.1)
#2: ------------------

(z+0.1)^2

Sampling time: 0.1

Note that:

• The syntax z = tf('z') is equivalent to z = tf('z',-1) and leaves the
sample time unspecified. The same applies to z = zpk('z').

1-26

Creating LTI Models

• Once you have defined z as indicated above, any rational expressions in z
creates a discrete-time model of the same type and with the same sample
time as z.

Discrete Transfer Functions in DSP Format
In digital signal processing (DSP), it is customary to write discrete transfer
functions as rational expressions in and to order the numerator and
denominator coefficients in ascending powers of . For example, the
numerator and denominator of

would be specified as the row vectors [1 0.5] and [1 2 3], respectively.
When the numerator and denominator have different degrees, this convention
clashes with the "descending powers of " convention assumed by tf (see
“Transfer Function Models” on page 1-12, or tf). For example,

h = tf([1 0.5],[1 2 3])

produces the transfer function

which differs from by a factor .

To avoid such convention clashes, Control System Toolbox offers a separate
function filt dedicated to the DSP-like specification of transfer functions.
Its syntax is

h = filt(num,den)

for discrete transfer functions with unspecified sample time, and

h = filt(num,den,Ts)

1-27

1 LTI Models

to further specify the sample time Ts. This function creates TF objects just
like tf, but expects num and den to list the numerator and denominator
coefficients in ascending powers of . For example, typing

h = filt([1 0.5],[1 2 3])

produces

Transfer function:
1 + 0.5 z^-1

1 + 2 z^-1 + 3 z^-2

Sampling time: unspecified

You can also use filt to specify MIMO transfer functions in . Just as for
tf, the input arguments num and den are then cell arrays of row vectors of
appropriate dimensions (see “Transfer Function Models” on page 1-12 for
details). Note that each row vector should comply with the "ascending powers
of " convention.

Data Retrieval
The functions tf, zpk, ss, and frd pack the model data and sample time in
a single LTI object. Conversely, the following commands provide convenient
data retrieval for any type of TF, SS, or ZPK model sys, or FRD model sysfr.

[num,den,Ts] = tfdata(sys) % Ts = sample time
[z,p,k,Ts] = zpkdata(sys)
[a,b,c,d,Ts] = ssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)
[response,frequency,Ts] = frdata(sysfr)

Note that:

• sys can be any type of LTI object, except an FRD model

• sysfr, the input argument to frdata, can only be an FRD model

You can use any variable names you want in the output argument list of
any of these functions.

1-28

Creating LTI Models

The output arguments num and den assigned to tfdata, and z and p assigned
to zpkdata, are cell arrays, even in the SISO case. These cell arrays have
as many rows as outputs, as many columns as inputs, and their ijth entry
specifies the transfer function from the jth input to the ith output. For
example,

H = [tf([1 -1],[1 2 10]) , tf(1,[1 0])]

creates the one-output/two-input transfer function

Typing

[num,den] = tfdata(H);
num{1,1}, den{1,1}

displays the coefficients of the numerator and denominator of the first input
channel.

ans =
0 1 -1

ans =
1 2 10

Note that the same result is obtained using

H.num{1,1}, H.den{1,1}

See “Direct Property Referencing Using Dot Notation” on page 1-38 for more
information about this syntax.

To obtain the numerator and denominator of SISO systems directly as row
vectors, use the syntax

[num,den,Ts] = tfdata(sys,'v')

For example, typing

1-29

1 LTI Models

sys = tf([1 3],[1 2 5]);
[num,den] = tfdata(sys,'v')

produces

num =

0 1 3

den =

1 2 5

Similarly,

[z,p,k,Ts] = zpkdata(sys,'v')

returns the zeros, z, and the poles, p, as vectors for SISO systems.

1-30

LTI Properties

LTI Properties

In this section...

“What are LTI Properties?” on page 1-31

“Generic LTI Properties” on page 1-31

“Model-Specific Properties” on page 1-33

“Setting LTI Properties” on page 1-35

“Accessing Property Values Using get” on page 1-37

“Direct Property Referencing Using Dot Notation” on page 1-38

“Additional Insight into LTI Properties” on page 1-40

What are LTI Properties?
The previous section shows how to create LTI objects that encapsulate the
model data and sample time. You also have the option to attribute additional
information, such as the input names or notes on the model history, to LTI
objects. This section gives a complete overview of the LTI properties, i.e., the
various pieces of information that can be attached to the TF, ZPK, SS, and
FRD objects. Type helpltiprops for online help on available LTI properties.

From a data structure standpoint, the LTI properties are the various fields
in the TF, ZPK, SS, and FRD objects. These fields have names (the property
names) and are assigned values (the property values). We distinguish between
generic properties, common to all four types of LTI objects, and model-specific
properties that pertain only to one particular type of model.

Generic LTI Properties
The generic properties are those shared by all four types of LTI models (TF,
ZPK, SS, and FRD objects). They are listed in the table below.

1-31

1 LTI Models

LTI Properties Common to All LTI Objects

Property Name Description Data Type

InputDelay Input delay(s) Vector

InputGroup Input channel groups Structure

InputName Input channel names Cell vector of strings

Notes Notes on the model history Text

OutputDelay Output delay(s) Vector

OutputGroup Output channel groups Structure

OutputName Output channel names Cell vector of strings

Ts Sample time Scalar

Userdata Additional data Arbitrary

The sample time property Ts keeps track of the sample time (in seconds)
of discrete-time systems. By convention, Ts is 0 (zero) for continuous-time
systems, and Ts is -1 for discrete-time systems with unspecified sample time.
Ts is always a scalar, even for MIMO systems.

The InputDelay, OutputDelay, ioDelay and InternalDelay properties
allow you to specify time delays in the input or output channels, or for each
input/output pair. Their default value is zero (no delay). See “Time Delays” on
page 1-49 for details on modeling delays.

The InputName and OutputName properties enable you to give names to the
individual input and output channels. The value of each of these properties is
a cell vector of strings with as many cells as inputs or outputs. For example,
the OutputName property is set to

{ 'temperature' ; 'pressure' }

for a system with two outputs labeled temperature and pressure. The
default value is a cell of empty strings.

Using the InputGroup and OutputGroup properties of LTI objects, you can
create different groups of input or output channels, and assign names to the

1-32

LTI Properties

groups. For example, you may want to designate the first four inputs of a
five-input model as controls, and the last input as noise. See “Input Groups
and Output Groups” on page 1-43 for more information.

Finally, Notes and Userdata are available to store additional information on
the model. The Notes property is dedicated to any text you want to supply
with your model, while the Userdata property can accommodate arbitrary
user-supplied data. They are both empty by default.

For more detailed information on how to use LTI properties, see “Additional
Insight into LTI Properties” on page 1-40.

Model-Specific Properties
The remaining LTI properties are specific to one of the four model types
(TF, ZPK, SS, or FRD). For single LTI models, these are summarized in the
following four tables. The property values differ for LTI arrays. See set for
more information on these values.

TF-Specific Properties

Property
Name Description Data Type

den Denominator(s) Real cell array of row
vectors

num Numerator(s) Real cell array of row
vectors

ioDelay I/O delay(s) Matrix

Variable Transfer function variable String 's', 'p', 'z', 'q',
or 'z^-1'

1-33

1 LTI Models

ZPK-Specific Properties

Property
Name Description Data Type

z Zeros Cell array of column vectors

p Poles Cell array of column vectors

k Gains Two-dimensional real matrix

Variable Transfer function
variable

String 's', 'p', 'z', 'q', or
'z^-1'

ioDelay I/O delay(s) Matrix

SS-Specific Properties

Property Name Description Data Type

a State matrix 2-D real matrix

b Input-to-state matrix 2-D real matrix

c State-to-output matrix 2-D real matrix

d Feedthrough matrix 2-D real matrix

e Descriptor matrix 2-D real matrix

InternalDelay I/O delay(s) Matrix

Nx Number of states Scalar integer

StateName State names Cell vector of strings

FRD-Specific Properties

Property Name Description Data Type

Frequency Frequency data points Real-valued vector

ResponseData Frequency response Complex-valued
multidimensional array

Units Units for frequency String ’rad/s’ or ’Hz’

1-34

LTI Properties

Most of these properties are dedicated to storing the model data. Note that
the matrix is set to [] (the empty matrix) for standard state-space models,
a storage-efficient shorthand for the true value .

The Variable property is only an attribute of TF and ZPK objects. This
property defines the frequency variable of transfer functions. The default
values are 's' (Laplace variable) in continuous time and 'z' (Z-transform
variable) in discrete time. Alternative choices include 'p' (equivalent to)
and 'q' or 'z^-1' for the reciprocal of the variable. The influence
of the variable choice is mostly limited to the display of TF or ZPK models.
One exception is the specification of discrete-time transfer functions with
tf (see tf for details).

Note that tf produces the same result as filt when the Variable property is
set to 'z^-1' or 'q'.

Finally, the StateName property is analogous to the InputName and
OutputName properties and keeps track of the state names in state-space
models.

Setting LTI Properties
There are three ways to specify LTI property values:

• You can set properties when creating LTI models with tf, zpk, ss, or frd.

• You can set or modify the properties of an existing LTI model with set.

• You can also set property values using structure-like assignments.

This section discusses the first two options. See “Direct Property Referencing
Using Dot Notation” on page 1-38 for details on the third option.

The function set for LTI objects follows the same syntax as its Handle
Graphics counterpart. Specifically, each property is updated by a pair of
arguments

PropertyName,PropertyValue

where

1-35

1 LTI Models

• PropertyName is a string specifying the property name. You can type
the property name without regard for the case (upper or lower) of the
letters in the name. Actually, you need only type any abbreviation of the
property name that uniquely identifies the property. For example, 'user'
is sufficient to refer to the Userdata property.

• PropertyValue is the value to assign to the property (see set for details on
admissible property values).

As an illustration, consider the following simple SISO model for a heating
system with an input delay of 0.3 seconds, an input called "energy," and an
output called "temperature."

A Simple Heater Model

You can use a TF object to represent this delay system, and specify the time
delay, the input and output names, and the model history by setting the
corresponding LTI properties. You can either set these properties directly
when you create the LTI model with tf, or by using the set command.

For example, you can specify the delay directly when you create the model,
and then use the set command to assign InputName, OutputName, and Notes
to sys.

sys = tf(1,[1 1],'Inputdelay',0.3);
set(sys,'inputname','energy','outputname','temperature',...
'notes','A simple heater model')

Finally, you can also use the set command to obtain a listing of all setable
properties for a given LTI model type, along with valid values for these
properties. For the transfer function sys created above

set(sys)

produces

num: Ny-by-Nu cell array of row vectors (Nu = no. of inputs)
den: Ny-by-Nu cell array of row vectors (Ny = no. of outputs)

1-36

LTI Properties

ioDelay: Ny-by-Nu array of delays for each I/O pair
Variable: ['s' | 'p' | 'z' | 'z^-1' | 'q']
Ts: Scalar (sample time in seconds)
InputDelay: Nu-by-1 vector
OutputDelay: Ny-by-1 vector
InputName: Nu-by-1 cell array of strings
OutputName: Ny-by-1 cell array of strings
InputGroup: structure with one field per channel group.
OutputGroup: structure with one field per channel group.
Name: String
Notes: Text
UserData: Arbitrary

Accessing Property Values Using get
You access the property values of an LTI model sys with get. The syntax is

PropertyValue = get(sys,PropertyName)

where the string PropertyName is either the full property name, or any
abbreviation with enough characters to identify the property uniquely. For
example, typing

h = tf(100,[1 5 100],'inputname','voltage',...
'outputn','current',...
'notes','A simple circuit')

get(h,'notes')

produces

ans =

'A simple circuit'

To display all of the properties of an LTI model sys (and their values), use the
syntax get(sys). In this example,

get(h)

produces

1-37

1 LTI Models

num: {[0 0 100]}
den: {[1 5 100]}

ioDelay: 0
Variable: 's'

Ts: 0
InputDelay: 0

OutputDelay: 0
InputName: {'voltage'}

OutputName: {'current'}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
Name: ''

Notes: {'A simple circuit'}
UserData: []

Notice that default (output) values have been assigned to any LTI properties
in this list that you have not specified.

Finally, you can also access property values using direct structure-like
referencing. This topic is explained in “Direct Property Referencing Using
Dot Notation” on page 1-38

Direct Property Referencing Using Dot Notation
An alternative way to query/modify property values is by structure-like
referencing. Recall that LTI objects are basic MATLAB structures except for
the additional flag that marks them as TF, ZPK, SS, or FRD objects (see “LTI
Objects” on page 1-7). The field names for LTI objects are the property names,
so you can retrieve or modify property values with the structure-like syntax.

PropertyValue = sys.PropertyName % gets property value
sys.PropertyName = PropertyValue % sets property value

These commands are respectively equivalent to

PropertyValue = get(sys,'PropertyName')
set(sys,'PropertyName',PropertyValue)

For example, type

1-38

LTI Properties

sys = ss(1,2,3,4,'InputName','u');
sys.a

and you get the value of the property "a" for the state-space model sys.

ans =
1

Similarly,

sys.a = -1;

resets the state transition matrix for sys to -1.

Unlike standard MATLAB structures, you do not need to type the entire field
name or use upper-case characters. You only need to type the minimum
number of characters sufficient to identify the property name uniquely. Thus
either of the commands

sys.InputName
sys.inputn

produces

ans =

'u'

Any valid syntax for structures extends to LTI objects. For example, given
the TF model

h = tf(1,[1,0],'variable','p');

you can reset the numerator to by typing

h.num{1} = [1 2];

or equivalently, with

h.num{1}(2) = 2;

1-39

1 LTI Models

Additional Insight into LTI Properties
By reading this section, you can learn more about using the Ts, InputName,
OutputName, InputGroup, and OutputGroup LTI properties through a set of
examples. For basic information on Notes and Userdata, see “Generic LTI
Properties” on page 1-31. For detailed information on the use of InputDelay,
OutputDelay, ioDelay, and InternalDelay, see “Time Delays” on page 1-49.

Sample Time
The sample time property Ts is used to specify the sampling period (in
seconds) for either discrete-time or discretized continuous-time LTI models.
Suppose you want to specify

as a discrete-time transfer function model with a sampling period of 0.5
seconds. To do this, type

h = tf([1 0],[2 1 1],0.5);

This sets the Ts property to the value 0.5, as is confirmed by

h.Ts

ans =
0.5000

For continuous-time models, the sample time property Ts is 0 by convention.
For example, type

h = tf(1,[1 0]);
get(h,'Ts')

ans =
0

To leave the sample time of a discrete-time LTI model unspecified, set Ts to
. For example,

h = tf(1,[1 -1],-1)

1-40

LTI Properties

produces

Transfer function:
1

z - 1

Sampling time: unspecified

The same result is obtained by using the Variable property.

h = tf(1,[1 -1],'var','z')

In operations that combine several discrete-time models, all specified sample
times must be identical, and the resulting discrete-time model inherits this
common sample time. The sample time of the resultant model is unspecified if
all operands have unspecified sample times. With this inheritance rule for Ts,
the following two models are equivalent.

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],-1)

and

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],0.1)

Note that

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],0.5)

returns an error message.

??? Error using ==> lti/plus
In SYS1+SYS2, both models must have the same sample time.

1-41

1 LTI Models

Caution Resetting the sample time of a continuous-time LTI model sys
from zero to a nonzero value does not discretize the original model sys. The
command

set(sys,'Ts',0.1)

only affects the Ts property and does not alter the remaining model data. Use
c2d and d2c to perform continuous-to-discrete and discrete-to-continuous
conversions. For example, use

sysd = c2d(sys,0.1)

to discretize a continuous system sys at a 10Hz sampling rate. Use d2d to
change the sample time of a discrete-time system and resample it.

Input Names and Output Names
You can use the InputName and OutputName properties (in short, I/O names) to
assign names to any or all of the input and output channels in your LTI model.

For example, you can create a SISO model with input thrust, output
velocity, and transfer function by typing

h = tf(1,[1 10]);
set(h,'inputname','thrust','outputname','velocity',...

'variable','p')

Equivalently, you can set these properties directly by typing

h = tf(1,[1 10],'inputname','thrust',...
'outputname','velocity',...
'variable','p')

This produces

Transfer function from input "thrust" to output "velocity":
1

p + 10

1-42

LTI Properties

Note how the display reflects the input and output names and the variable
selection.

In the MIMO case, use cell vectors of strings to specify input or output
channel names. For example, type

num = {3 , [1 2]};
den = {[1 10] , [1 0]};
H = tf(num,den); % H(s) has one output and two inputs

set(H,'inputname',{'temperature' ; 'pressure'})

The specified input names appear in the display of H.

Transfer function from input "temperature" to output:
3

s + 10

Transfer function from input "pressure" to output:
s + 2

s

To leave certain names undefined, use the empty string '' as in

H = tf(num,den,'inputname',{ 'temperature' ; '' })

Input Groups and Output Groups
In many applications, you may want to create several (distinct or intersecting)
groups of input or output channels and name these groups. For example,
you may want to label one set of input channels as noise and another set
as controls.

To see how input and output groups (I/O groups) work:

1 Create a random state-space model with one state, three inputs, and three
outputs.

1-43

1 LTI Models

2 Assign the first two inputs to a group named controls, the first output
to a group named temperature, and the last two outputs to a group
named measurements. Note that both InputGroup and OutputGroup are
structures.

To do this, type

h = rss(1,3,3);
h.InputGroup.controls=[1 2];
h.OutputGroup.temperature = [1];
h.OutputGroup.measurements = [2 3];
h

and MATLAB returns a state-space model of the following form.

a =
x1 x2 x3

x1 -2.809 1.967 -1.82
x2 -2.432 -2.042 0.8313
x3 1.125 1.655 -1.017

b =
u1 u2 u3

x1 -0.7829 0.4801 0
x2 0 0.6682 2.309
x3 -0.2512 -0.07832 0.5246

c =
x1 x2 x3

y1 -0.01179 0 -0.2762
y2 0.9131 0.4855 1.276
y3 0.05594 -0.005005 1.863

d =
u1 u2 u3

y1 -0.5226 0 0
y2 0.1034 0 0.2617

1-44

LTI Properties

y3 -0.8076 0 0

Input groups:
Name Channels

controls 1,2

Output groups:
Name Channels

temperature 1
measurements 2,3

Continuous-time model.

Similarly, you can add or delete channels from an existing input or output
group by redefining the group members, For example,

h.OutputGroup.temperature=[1 2]

adds the second output to the temperature group. To delete a channel from a
group, just respecify it. For example,

h.OutputGroup.temperature=[1]

restores the original temperature group by deleting output #2 from the group.

1-45

1 LTI Models

Model Conversion

In this section...

“Available Model Formats” on page 1-46

“Explicit Conversion” on page 1-46

“Automatic Conversion” on page 1-47

“Caution About Model Conversions” on page 1-48

Available Model Formats
There are four LTI model formats you can use with Control System Toolbox:

• TF

• ZPK

• SS

• FRD

This section shows how to convert models from one format to the other.

Explicit Conversion
Model conversions are performed by tf, ss, zpk, and frd. Given any TF, SS,
or ZPK model sys, the syntax for conversion to another model type is

sys = tf(sys) % Conversion to TF

sys = zpk(sys) % Conversion to ZPK

sys = ss(sys) % Conversion to SS

sys = frd(sys,frequency) % Conversion to FRD

Notice that FRD models can’t be converted to the other model types. In
addition, you must also include a vector of frequencies (frequency) as an
input argument when converting to an FRD model.

1-46

Model Conversion

For example, you can convert the state-space model

sys = ss(-2,1,1,3)

to a zero-pole-gain model by typing

zpk(sys)

to which MATLAB responds

Zero/pole/gain:
3 (s+2.333)

(s+2)

Note that the transfer function of a state-space model with data
is

for continuous-time models, and

for discrete-time models.

Automatic Conversion
Some algorithms operate only on one type of LTI model. For example, the
algorithm for zero-order-hold discretization with c2d can only be performed
on state-space models. Similarly, commands like tfdata expect one particular
type of LTI models (TF). For convenience, such commands automatically
convert LTI models to the appropriate or required model type. For example, in

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata first converts the state-space model sys to an equivalent transfer
function in order to return numerator and denominator data.

1-47

1 LTI Models

Conversions to state-space models are not uniquely defined. For this reason,
automatic conversions to state space are disabled when the result depends
on the choice of state coordinates, for example, in commands like initial or
kalman.

Caution About Model Conversions
When manipulating or converting LTI models, keep in mind that:

• The three LTI model types TF, ZPK, and SS, are not equally well-suited
for numerical computations. In particular, the accuracy of computations
using high-order transfer functions is often poor. Therefore, it is often
preferable to work with the state-space representation. In addition, it is
often beneficial to balance and scale state-space models using ssbal. You
get this type of balancing automatically when you convert any TF or ZPK
model to state space using ss.

• Conversions to the transfer function representation using tf may incur a
loss of accuracy. As a result, the transfer function poles may noticeably
differ from the poles of the original zero-pole-gain or state-space model.

• Conversions to state space are not uniquely defined in the SISO case, nor
are they guaranteed to produce a minimal realization in the MIMO case.
For a given state-space model sys,

ss(tf(sys))

may return a model with different state-space matrices, or even a different
number of states in the MIMO case. Therefore, if possible, it is best to avoid
converting back and forth between state-space and other model types.

1-48

Time Delays

Time Delays

In this section...

“Supported Types of Delays” on page 1-49

“Available Properties for Modeling Delays” on page 1-50

“Input and Output Delays” on page 1-50

“Specifying I/O Delays in MIMO Models” on page 1-53

“Internal Delays” on page 1-55

“Analyzing Systems With Delays” on page 1-58

“Eliminating Time Delays: Padé Approximation” on page 1-65

“Sensitivity Analysis” on page 1-68

“Specifying Delays in Discrete-Time Models” on page 1-71

“Discretization” on page 1-76

“Functions That Support Internal Time Delays” on page 1-78

“Inside Time Delay Models” on page 1-79

Supported Types of Delays
Control System Toolbox provides powerful tools for accurate analysis of LTI
systems with time delays. Such systems are common, particularly in process
control applications. You can use this toolbox to create, manipulate, and
analyze any LTI model with a finite number of delays.

Delays can occur at

• Inputs

• Outputs

• Between individual I/O pairs

• Internally (for example, inside a feedback loop)

1-49

1 LTI Models

Available Properties for Modeling Delays
Transfer function (TF), zero-pole-gain (ZPK), and frequency response data
(FRD) objects have three properties for modeling delays:

• InputDelay — Specify delays at the inputs.

• OutputDelay — Specify delays at the outputs.

• IODelay — Specify independent transport delays for individual I/O pairs.

State-space (SS) objects have three properties as well:

• InputDelay — Specify delays at the inputs.

• OuputDelay — Specify delays at the outputs.

• InternalDelay — Keep track of delays when combining models with
internal/external delays or closing feedback loops.

Since SS objects can keep track of internal delays, state-space representation
is best suited for modeling and analyzing delay effects in control systems.

Input and Output Delays
The simplest type of delays are delays in the input and output channels.
The InputDelay and OutputDelay properties let you specify such delays
Use theInputDelay property to specify delays at the model inputs and the
OutputDelay property to specify delays at the outputs. For example, you can
specify a first-order transfer function with deadtime (which is common in
process control applications):

k s
e
s

s
() =

+

−2

1

s = tf('s');
sys = 1/(s+1);
sys.InputDelay = 2

Transfer function:
1

exp(-2*s) * -----

1-50

Time Delays

s + 1

creates a system with a 2 s. delay.

Likewise, use the OutputDelay property to specify output delays. For example:

sys.OuputDelay = 1.5;

Specifying Input and Output Delays in State-Space Models
You can also specify state-space models with delays at the inputs or outputs.
For example,

dx
dt

x t u t

y t x t

= − + −

=

2 1 8

7

() (.)

() ()

can be specified with

sys1=ss(-2,1,7,0,'InputDelay',1.8)

a =
x1

x1 -2

b =
u1

x1 1

c =
x1

y1 7

d =
u1

y1 0

Input delays (listed by channel): 1.8

Continuous-time model.

1-51

1 LTI Models

The model has an input delay of 1.8 s. Similarly, to create the model:

dx
dt

x t u t

y t x t

= − +

= −

2

7 1 8

() ()

() (.)

with a 1.8 s. delay at the output, use:

sys2=ss(-2,1,7,0,'OutputDelay', 1.8);
sys2.OutputDelay
ans =

1.8000

Compare the step response of the two systems:

step(sys1,sys2);
grid
legend('System with input delay','System with output delay')

1-52

Time Delays

The response is exactly the same for both systems. The difference lies in state
trajectories. Since the y(t)’s are equal,

x t x t1 2 1 8() (.)= −

where x1 is the state of sys1, and x2 is the state of sys2.

Specifying I/O Delays in MIMO Models
You can also specify independent delays on each entry of a MIMO TF or ZPK
model. Transport delays from a given input to a given output of a MIMO
system are called I/O delays. For example, to create this 2-by-2 transfer
function with four I/O delays:

1-53

1 LTI Models

Use exp to specify the delays and apply them to each entry:

s=tf('s'); % Laplace variable
sys= exp(-s*[0.5 1.2; 0.3 0.9]).* ...
[s/(s+2) 3/(s^2+5); 2/(s^2+2*s+7) (s+7)/(s+9)];
Transfer function from input 1 to output...

s
#1: exp(-0.5*s) * -----

s + 2

2
#2: exp(-0.3*s) * -------------

s^2 + 2 s + 7

Transfer function from input 2 to output...
3

#1: exp(-1.2*s) * -------
s^2 + 5

s + 7
#2: exp(-0.9*s) * -----

s + 9

Using the ioDelay Property to Specify Delays
You could also have specified the delays by setting the ioDelay property.

s=tf('s');
sys= [s/(s+2) 3/(s^2+5); ...
2/(s^2+2*s+7) (s+7)/(s+9)];
tau = [0.1 0.2; 0.3 0.9]; % Create I/O delay matrix.
sys.ioDelay = tau; % Add I/O delays to sys.

You can retrieve the I/O delay values using the following:

1-54

Time Delays

sys.ioDelay
ans =

0.1000 0.2000
0.3000 0.9000

Internal Delays
Using the InputDelay, OutputDelay, and ioDelay properties, you can model
simple processes with transport delays, but you cannot model more complex
situations, like a feedback loop with delays. In addition to the InputDelay
and OutputDelay properties, state-space (SS) models have an InternalDelay
property, that lets you model interconnection of systems with input, output, or
I/O delays, including feedback loops with delays. You can use this feature to
accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

• Concatenating state-space models with input and output delays

• Feeding back a delayed signal

• Converting MIMO TF or ZPK models with I/O delays to state space

Using internal time delays, you can do the following:

• In continuous time, generate approximate-free time and frequency
simulations, since delays are no longer replaced by a Padé approximation.
In continuous time, this allows for more accurate analysis of systems with
long delays.

• In discrete time, you can keep delays separate from other system dynamics.
Delays are not replaced with poles at z=0, which boosts efficiency of time
and frequency simulations for discrete-time systems with long delays.

• Use most Control System Toolbox functions.

• Test advanced control strategies for delayed systems. For example, you
can implement and test an accurate model of a Smith predictor. See the
Smith predictor demo.

Why Internal Delays Are Necessary
Why are input, output, and I/O delays not enough to model systems? Consider
the simple feedback loop with a 2 s. delay:

1-55

1 LTI Models

���
����

The closed-loop transfer function is

e

s e

s

s

−

−+ +

2

22

While the delay term in the numerator can be represented as an output delay,
the delay term in the denominator cannot. In order to model the effect of the
delay on the feedback loop, an additional property is needed to keep track of
internal coupling between delays and ordinary dynamics.

Building Models with Internal Delays
Typically, state-space models with internal delays are not created by
specifying A, B, C, and D matrices together with a set of internal delays.
Rather, build such models by connecting simpler LTI models (some with I/O
delays) in series, parallel, or feedback. There is no limitation on how many
delays are involved and how the LTI models are connected. For example,
consider the following control loop, where the plant is modeled as first-order
plus dead time.

Using the state-space representation, you can derive model T for the
closed-loop response from r to y and simulate it by

P = ss(5*exp(-3.4*s)/(s+1));
C = 0.1 * (1 + 1/(5*s));
T = feedback(P*C,1)

1-56

Time Delays

a =
x1 x2

x1 -1.5 0.32
x2 -0.3125 0

b =
u1

x1 0.2
x2 0.125

c =
x1 x2

y1 2.5 0

d =
u1

y1 0

(a,b,c,d values when setting all internal delays to zero)

Internal delays: 3.4

A few things to note:

• The model had to be converted to SS from TF representation

• Control System Toolbox sets all delays to 0 when displaying the A, B, C, and
D matrices (data for zero-order Padé approximation).

• Feedback loops are fully supported. You can always wrap a feedback loop
around any system with delays.

Using combinations of state-space models and interconnection functions, it
is possible to create arbitrary linear systems with delays. The recommended
procedure is to build complex models incrementally by interconnecting
smaller models. Complex diagrams are decomposable unless you have
lumped delays (as in integral equations). Once you have created a system
with internal delays, you can view and change the delays’ values using dot
notation. For example:

1-57

1 LTI Models

sys_delay.Internaldelay

ans =

1.5000

Note that you cannot modify the number of internal delays since they are
structural properties of the model. You can, however, set the delays to 0 or
change their values.

Analyzing Systems With Delays
You can use the usual analysis commands (step, bode, margin, ...) to
analyze systems with delays. No approximations are made when performing
such analysis.

For example, use this code to see the closed-loop step response of T.

step(T)
grid, title('Closed-loop step response')

1-58

Time Delays

For more complicated interconnections, you can name the input and output
signals of each block and use connect to automatically take care of the wiring.
Suppose, for example, that you want to add feedforward to the control loop
of the previous model.

1-59

1 LTI Models

You can derive the corresponding closed-loop model T by

F = 0.3/(s+4);
P.InputName = 'u'; P.OutputName = 'y';
C.InputName = 'e'; C.OutputName = 'uc';
F.InputName = 'r'; F.OutputName = 'uf';
Sum1 = sumblk('e','r','y','+-'); % e = r-y
Sum2 = sumblk('u','uf','uc','++'); % u = uf+uc
Tff = connect(P,C,F,Sum1,Sum2,'r','y');

and compare its response with the feedback only design.

step(T,'b',Tff,'r')
legend('No feedforward','Feedforward')
grid
title('Closed-loop step response with and without feedforward')

1-60

Time Delays

Considerations to Keep in Mind when Analyzing Systems with
Internal Time Delays
The time and frequency responses of delay systems can look odd and
suspicious to those only familiar with delay-free LTI analysis. Time responses
can behave chaotically, Bode plots can exhibit gain oscillations, etc. These are
not software or numerical quirks but real features of such systems. Below are
a few illustrations of these phenomena.

Gain ripple:

s=tf('s');
G = exp(-5*s)/(s+1);
T = feedback(ss(G),.5);

1-61

1 LTI Models

bodemag(T)

Gain oscillations:

G = ss(1) + 0.5 * exp(-3*s);
bodemag(G)

1-62

Time Delays

Jagged step response:

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)

1-63

1 LTI Models

Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = ss(1/(s+1)) + exp(-4*s);
T = feedback(1,G);

step(T)

1-64

Time Delays

Control System Toolbox provides you with powerful tools to model and analyze
these and other strange-appearing artifacts of internal delays.

Eliminating Time Delays: Padé Approximation
Most control design algorithms cannot handle time delays directly. For
example, root locus, LQG, pole placement, etc., will not work properly if
time delays are present. A common technique is to replace delays by their
Padé approximations (all-pass filters). But because this approximation
is valid only at low frequencies, it is important to compare the true and
approximate responses to choose the right approximation order and check
the approximation validity. Use the pade command to compute Padé
approximations of LTI models with delays. For example, consider a system
with a PI controller:

1-65

1 LTI Models

Use this code to implement the system:

s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1);

For the PI controller, you can compare the exact closed-loop response T with
the response obtained for a first-order Padé approximation of the delay:

T1 = pade(T,1);
step(T,'b--',T1,'r',100)
grid, legend('Exact','First-Order Pade')

1-66

Time Delays

The approximation error is large. To get a better approximation, try a
second-order Padé approximation of the delay:

T2 = pade(T,2);
step(T,'b--',T2,'r',100)
grid, legend('Exact','Second-Order Pade')

1-67

1 LTI Models

The responses now match closely except for the nonminimum phase artifact
(“wrong way” effect) introduced by the Padé approximation.

Sensitivity Analysis
Delays are rarely known accurately, so it is often important to understand
how sensitive a control system is to the delay value. Such sensitivity analysis
is easily performed using LTI arrays and the InternalDelay property. For
example, consider this notched PI control system developed in “PI Control
Loop with Dead Time” from the Analyzing Control Systems with Delays demo.

% Create a 3rd-order plant with a PI controller and notch filter.
s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);

1-68

Time Delays

C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1)
notch = tf([1 0.2 1],[1 .8 1]);
C = 0.05 * (1 + 1/s);
Tnotch = feedback(ss(P*C*notch),1);

Create five models with delay values ranging from 2.0 to 3.0:

tau = linspace(2,3,5); % 5 delay values
Tsens = repsys(Tnotch,[1 1 5]); % 5 copies of Tnotch

% for j=1:5
Tsens(:,:,j).InternalDelay = tau(j); % jth delay value

% -> jth model end
% Use step to create an envelope plot.
step(Tsens)
grid
title('Closed-loop response for 5 delay values between 2.0 and 3.0')

1-69

1 LTI Models

This plot shows that uncertainty on the delay value has little effect on
closed-loop characteristics. Note that while you can change the values of
internal delays, you cannot change how many there are because this is part of
the model structure. To eliminate some internal delays, set their value to 0
or use pade with order zero:

Tnotch0 = Tnotch;
Tnotch0.InternalDelay = 0;
bode(Tnotch,'b',Tnotch0,'r',{1e-2,3})
grid, legend('Delay = 2.6','No delay','Location','SouthWest')

1-70

Time Delays

Specifying Delays in Discrete-Time Models
Discrete-time delays are handled in a similar way, but have some minor
differences:

• Discrete-time delays are always integer multiples of the sampling period.

• Discrete-time delays are equivalent to poles at z=0, so it is always possible
to absorb delays into the model dynamics (see delay2z). Keeping delays
separate is better for performance, especially for systems with long delays
compared to the sampling period.

For example, to specify the first-order model

1-71

1 LTI Models

H z z
z

()
.

=
−

−25 2
0 25

with sampling period Ts=0.1, and a delay of 25 sample periods, use

H = tf(2,[1 -0.95],0.1,'inputdelay',25)
step(H)

The equivalent state-space representation is:

H = ss(H)
a =

x1

1-72

Time Delays

x1 0.95

b =
u1

x1 2

c =
x1

y1 1

d =
u1

y1 0

Input delays (listed by channel): 25

Sampling time: 0.1
Discrete-time model.

Example: Discrete-Time Model with Delayed Feedback
Next, consider the feedback loop below where g is a pure gain.

To compute the closed-loop response for g=0.01, type:

g = .01;
T = feedback(g*H,1)
step(T)

1-73

1 LTI Models

T is still a first-order model with an internal delay of 25 samples. For
comparison, map all delays to poles at z=0 using delay2z:

T1 = delay2z(T);
order(T1)
ans =

26

The resulting model has 26 states and is therefore less efficient to simulate.
As expected, however, the step responses of T and T1 match exactly:

step(T,'b',T1,'r--')
legend('T','T1')

1-74

Time Delays

In general, it is recommend to keep delays separate, except when analyzing
the closed-loop dynamics of models with internal delays. For example:

rlocus(H)

axis([-1.25 1.25 -1.25 1.25])

1-75

1 LTI Models

Discretization
You can use c2d to discretize continuous-time delay systems. Available
methods include zero-order hold (ZOH), first-order hold (FOH), and Tustin.
For models with internal delays, the ZOH discretization is not always exact,
i.e., the continuous and discretized step responses may not match:

s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1);
Td = c2d(T,1); step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')

1-76

Time Delays

To correct such discretization gaps, reduce the sampling period until the
continuous and discrete responses match closely:

Td = c2d(T,0.05); step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays.
Use faster sampling rate if discretization error is large.

1-77

1 LTI Models

Note that internal delays remain internal in the discretized model and do
not inflate the model order:

order(Td)
ans =

3

Functions That Support Internal Time Delays
The following commands support internal delays for both continuous- and
discrete-time systems:

• All interconnection functions

1-78

Time Delays

• Time domain response functions—except for impulse and initial

• Frequency domain functions—except for norm

Functions that do not support time delays include the following:

• System dynamics—norm and lti/isstable

• Time-domain analysis—initial, initialplot, impulse, and impulseplot

• Model simplification—balreal, balred, minreal, modred, andsminreal

• Conversions—to ZPK and TF representations

• Compensator design—rlocus, lqg,lqry,lqrd, kalman,kalmd,lqgreg, and
augstate

In addition, the SISO Design Tool does not accept systems with internal
delays. For users of Simulink Control Design, linearization is not available
for systems with delay.

Finally, keep the following limitations in mind:

• allmargin, margin—Uses interpolation so only as precise as the fineness
of the specified grid

• pole, zero—Returns poles and zeros of the system with all delays set to
zero.

• ssdata, get—If an SS model has internal delays, the A, B, C, and D matrices
returned are for all internal delays set to zero. Augmented state-space
equations keep track of which internal delays enter the model.

Inside Time Delay Models
State-space objects use generalized state-space equations to keep track of
internal delays. Conceptually, such models consist of two interconnected parts:

• An ordinary state-space model H(s) with an augmented I/O set

• A bank of internal delays.

1-79

1 LTI Models

The corresponding state-space equations are:

�x Ax t B u t B w t
y t C x t D u t D w t
z t C x

= + +
= + +
=

() () ()
() () () ()
() (

1 2

1 11 12

2 tt D u t D w t
w t z t j Nj j

) () ()
() (), ,...,

+ +
= − =

21 22

1τ

You need not bother with this internal representation to use the tools. If,
however, you want to extract H or the matrices A,B1,B2, ,... , you can use
getDelayModel, For the example:

P = 5*exp(-3.4*s)/(s+1);
C = 0.1 * (1 + 1/(5*s));
T = feedback(ss(P*C),1);

[H,tau] = getDelayModel(T,'lft'); size(H)

Note that H is a two-input, two-output model whereas T is SISO. The
inverse operation (combining H and tau to construct T) is performed by
setDelayModel.

1-80

Simulink Block for LTI Systems

Simulink Block for LTI Systems
You can incorporate LTI objects into Simulink diagrams using the LTI System
block shown below.

��	
���������������
���������	�
��	�����������������������
����������������������

The LTI System block can be accessed either by typing

ltiblock

at the MATLAB prompt or by selecting Control System Toolbox from the
Blocksets and Toolboxes section of the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the
figure above. In the editable text box labeled LTI system variable, enter
either the variable name of an LTI object located in the MATLAB workspace
(for example, sys) or a MATLAB expression that evaluates to an LTI object (for
example, tf(1,[1 1])). The LTI System block accepts both continuous and
discrete LTI objects in either transfer function, zero-pole-gain, or state-space
form. All types of delays are supported in the LTI block. Simulink converts
the model to its state-space equivalent prior to initializing the simulation.

Use the editable text box labeled Initial states to enter an initial state vector
for state-space models. The concept of "initial state" is not well-defined for

1-81

1 LTI Models

transfer functions or zero-pole-gain models, as it depends on the choice of
state coordinates used by the realization algorithm. As a result, you cannot
enter nonzero initial states when you supply TF or ZPK models to LTI blocks
in a Simulink diagram.

1-82

References

References
[1] Dorf, R.C. and R.H. Bishop, Modern Control Systems, Addison-Wesley,
Menlo Park, CA, 1998.

[2] Wood, R.K. and M.W. Berry, "Terminal Composition Control of a Binary
Distillation Column, "Chemical Engineering Science, 28 (1973), pp. 1707-1717.

1-83

1 LTI Models

1-84

2

Operations on LTI Models

Overview (p. 2-2) A brief discussion of LTI operations

Precedence and Property Inheritance
(p. 2-3)

How to perform operations on sets of
LTI models that contain models in
different formats

Extracting and Modifying
Subsystems (p. 2-5)

Inspect individual or groups of I/O
pairs of large models

Arithmetic Operations on LTI
Models (p. 2-12)

How to use overloaded operations to
perform arithmetic on LTI models

Model Interconnection Functions
(p. 2-17)

Creating new models by
interconnecting existing models; for
example, in series or in parallel

Continuous/Discrete Conversions of
LTI Models (p. 2-21)

Converting between continuous- and
discrete-time LTI systems

Resampling of Discrete-Time Models
(p. 2-31)

Changing the sample rate of a
discrete-time LTI model

References (p. 2-33) Relevant control theory literature

2 Operations on LTI Models

Overview
You can perform basic matrix operations such as addition, multiplication, or
concatenation on LTI models. Such operations are "overloaded," which means
that they use the same syntax as they do for matrices, but are adapted to
apply to LTI objects. These overloaded operations and their interpretation in
this context are discussed in this chapter. You can read about discretization
methods in this chapter as well.

These operations can be applied to LTI models of different types. As a result,
before discussing operations on LTI models, we discuss model type precedence
and how LTI model properties are inherited when models are combined using
these operations. To read about how you can apply these operations to arrays
of LTI models, see “Operations on LTI Arrays” on page 4-27. To read about
functions for analyzing LTI models, see Chapter 3, “Model Analysis Tools”.

2-2

Precedence and Property Inheritance

Precedence and Property Inheritance
You can apply operations to LTI models of different types. The resulting type
is then determined by the rules discussed in “Precedence Rules” on page 1-8.
For example, if sys1 is a transfer function and sys2 is a state-space model,
then the result of their addition

sys = sys1 + sys2

is a state-space model, since state-space models have precedence over transfer
function models.

To supersede the precedence rules and force the result of an operation to be a
given type, for example, a transfer function (TF), you can either

• Convert all operands to TF before performing the operation

• Convert the result to TF after performing the operation

Suppose, in the above example, you want to compute the transfer function of
sys. You can either use a priori conversion of the second operand

sys = sys1 + tf(sys2);

or a posteriori conversion of the result

sys = tf(sys1 + sys2)

Note These alternatives are not equivalent numerically; computations are
carried out on transfer functions in the first case, and on state-space models
in the second case.

Another issue is property inheritance, that is, how the operand property
values are passed on to the result of the operation. While inheritance is partly
operation-dependent, some general rules are summarized below:

• In operations combining discrete-time LTI models, all models must have
identical or unspecified (sys.Ts = -1) sample times. Models resulting
from such operations inherit the specified sample time, if there is one.

2-3

2 Operations on LTI Models

• Most operations ignore the Notes and Userdata properties.

• In general, when two LTI models sys1 and sys2 are combined using
operations such as +, *, [,], [;], append, and feedback, the resulting
model inherits its I/O names and I/O groups from sys1 and sys2. However,
conflicting I/O names or I/O groups are not inherited. For example, the
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2
have different InputName property values.

• A model resulting from operations on TF or ZPK models inherits its
Variable property value from the operands. Conflicts are resolved
according the following rules:

- For continuous-time models, 'p' has precedence over 's'.

- For discrete-time models, 'z^-1' has precedence over 'q' and 'z', while
'q' has precedence over 'z'.

2-4

Extracting and Modifying Subsystems

Extracting and Modifying Subsystems

In this section...

“What is a Subsystem?” on page 2-5

“Basic Subsystem Concepts” on page 2-5

“Referencing FRD Models Through Frequencies” on page 2-8

“Referencing Channels by Name” on page 2-9

“Resizing LTI Systems” on page 2-10

What is a Subsystem?
Subsystems relate subsets of the inputs and outputs of a system. The transfer
matrix of a subsystem is a submatrix of the system transfer matrix.

Basic Subsystem Concepts
For example, if sys is a system with two inputs, three outputs, and I/O relation

then gives the relation between the first input and third output.

Accordingly, use matrix-like subindexing to extract this subsystem.

SubSys = sys(3,1)

The resulting subsystem SubSys is an LTI model of the same type as sys,
with its sample time, time delay, I/O name, and I/O group property values
inherited from sys.

For example, if sys has an input group named controls consisting of
channels one, two, and three, then SubSys also has an input group named
controls with the first channel of SubSys assigned to it.

2-5

2 Operations on LTI Models

If sys is a state-space model with matrices a, b, c, d, the subsystem sys(3,1)
is a state-space model with data a, b(:,1), c(3,:), d(3,1). Note the
following rules when extracting subystems:

• In the expression sys(3,1), the first index selects the output channel while
the second index selects the input channel.

• When extracting a subsystem from a given state-space model, the resulting
state-space model may not be minimal. Use the command sminreal to
eliminate unnecessary states in the subsystem.

You can use similar syntax to modify the LTI model sys. For example,

sys(3,1) = NewSubSys

redefines the I/O relation between the first input and third output, provided
NewSubSys is a SISO LTI model.

Rules for Modifying LTI Model Subsystems
The following rules apply when modifying LTI model subsystems:

• sys, the LTI model that has had a portion reassigned, retains its original
model type (TF, ZPK, SS, or FRD) regardless of the model type of NewSubSys.

• Subsystem assignment does not reassign any I/O names or I/O group names
of NewSubSys that are already assigned to NewSubSys.

• Reassigning parts of a MIMO state-space model generally increases its
order.

• If NewSubSys is an FRD model, then sys must also be an FRD model.
Furthermore, their frequencies must match.

Other standard matrix subindexing extends to LTI objects as well. For
example,

sys(3,1:2)

extracts the subsystem mapping the first two inputs to the third output.

sys(:,1)

2-6

Extracting and Modifying Subsystems

selects the first input and all outputs, and

sys([1 3],:)

extracts a subsystem with the same inputs, but only the first and third
outputs.

For example, consider the two-input/two-output transfer function

To extract the transfer function from the first input to the first output,
type

T(1,1)

Transfer function:
1

s + 0.1

Next reassign to and modify the second input channel of
T by typing

T(1,1) = tf(1,[1 0.5]);
T(:,2) = [1 ; tf(0.4,[1 0])]

Transfer function from input 1 to output...
1

#1: -------
s + 0.5

s - 1
#2: -------------

s^2 + 2 s + 2

2-7

2 Operations on LTI Models

Transfer function from input 2 to output...
#1: 1

0.4
#2: ---

s

Referencing FRD Models Through Frequencies
You can extract subsystems from FRD models, as you do with other LTI model
types, by indexing into input and output (I/O) dimensions. You can also
extract subsystems by indexing into the frequencies of an FRD model.

To index into the frequencies of an FRD model, use the string 'Frequency'
(or any abbreviation, such as, 'freq', as long as it does not conflict with
existing I/O channel or group names) as a keyword. There are two ways you
can specify FRD models using frequencies:

• Using integers to index into the frequency vector of the FRD model

• Using a Boolean (logical) expression to specify desired frequency points
in an FRD model

For example, if sys is an FRD model with five frequencies, (e.g.,
sys.Frequency=[1 1.1 1.2 1.3 1.4]), then you can create a new FRD
model sys2 by indexing into the frequencies of sys as follows.

sys2 = sys('frequency', 2:3);
sys2.Frequency

ans =
1.1000
1.2000

displays the second and third entries in the frequency vector.

Similarly, you can use logical indexing into the frequencies.

sys2 = sys('frequency',sys.Frequency >1.0 & sys.Frequency <1.15);

sys2.freq

2-8

Extracting and Modifying Subsystems

ans =

1.1000

You can also combine model extraction through frequencies with indexing into
the I/O dimensions. For example, if sys is an FRD model with two inputs,
two outputs, and frequency vector [2.1 4.2 5.3], with sys.Units specified
in rad/s, then

sys2 = sys(1,2,'freq',1)

specifies sys2 as a SISO FRD model, with one frequency data point, 2.1 rad/s.

Referencing Channels by Name
You can also extract subsystems using I/O group or channel names. For
example, if sys has an input group named noise, consisting of channels two,
four, and five, then

sys(1,'noise')

is equivalent to

sys(1,[2 4 5])

Similarly, if pressure is the name assigned to an output channel of the LTI
model sys, then

sys('pressure',1) = tf(1, [1 1])

reassigns the subsystem from the first input of sys to the output labeled
pressure.

You can reference a set of channels by input or output name by using a cell
array of strings for the names. For example, if sys has one output channel
named pressure and one named temperature, then these two output
channels can be referenced using

sys({'pressure','temperature'})

2-9

2 Operations on LTI Models

Resizing LTI Systems
Resizing a system consists of adding or deleting inputs and/or outputs. To
delete the first two inputs, simply type

sys(:,1:2) = []

In deletions, at least one of the row/column indexes should be the colon (:)
selector.

To perform input/output augmentation, you can proceed by concatenation or
subassignment. Given a system sys with a single input, you can add a second
input using

sys = [sys,h];

or, equivalently, using

sys(:,2) = h;

where h is any LTI model with one input, and the same number of outputs
as sys. There is an important difference between these two options:
while concatenation obeys the “Precedence Rules” on page 1-8, subsystem
assignment does not alter the model type. So, if sys and h are TF and SS
objects, respectively, the first statement produces a state-space model, and
the second statement produces a transfer function.

For state-space models, both concatenation and subsystem assignment
increase the model order because they assume that sys and h have
independent states. If you intend to keep the same state matrix and only
update the input-to-state or state-to-output relations, use set instead and
modify the corresponding state-space data directly. For example,

sys = ss(a,b1,c,d1)
set(sys,'b',[b1 b2],'d',[d1 d2])

adds a second input to the state-space model sys by appending the B and D
matrices. You should simultaneously modify both matrices with a single set
command. Indeed, the statements

sys.b = [b1 b2]

2-10

Extracting and Modifying Subsystems

and

set(sys,'b',[b1 b2])

cause an error because they create invalid intermediate models in which the
B and D matrices have inconsistent column dimensions.

2-11

2 Operations on LTI Models

Arithmetic Operations on LTI Models

In this section...

“Supported Arithmetic Operations” on page 2-12

“Addition and Subtraction” on page 2-12

“Multiplication” on page 2-14

“Inversion and Related Operations” on page 2-15

“Transposition” on page 2-15

“Pertransposition” on page 2-16

Supported Arithmetic Operations
You can apply almost all arithmetic operations to LTI models, including those
shown below.

Operation Description

+ Addition

- Subtraction

* Multiplication

.* Element-by-element multiplication

/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

' Pertransposition

.' Transposition

^ Powers of an LTI model (as in s^2)

Addition and Subtraction
Adding LTI models is equivalent to connecting them in parallel. Specifically,
the LTI model

2-12

Arithmetic Operations on LTI Models

sys = sys1 + sys2

represents the parallel interconnection shown below.

If sys1 and sys2 are two state-space models with data and
, the state-space data associated with sys1 + sys2 is

Scalar addition is also supported and behaves as follows: if sys1 is MIMO and
sys2 is SISO, sys1 + sys2 produces a system with the same dimensions as
sys1 whose ijth entry is sys1(i,j) + sys2.

Similarly, the subtraction of two LTI models

sys = sys1 - sys2

is depicted by the following block diagram.

2-13

2 Operations on LTI Models

Multiplication
Multiplication of two LTI models connects them in series. Specifically,

sys = sys1 * sys2

returns an LTI model sys for the series interconnection shown below.

Notice the reverse orders of sys1 and sys2 in the multiplication and block
diagram. This is consistent with the way transfer matrices are combined in a
series connection: if sys1 and sys2 have transfer matrices and , then

For state-space models sys1 and sys2 with data and
, the state-space data associated with sys1*sys2 is

2-14

Arithmetic Operations on LTI Models

Finally, if sys1 is MIMO and sys2 is SISO, then sys1*sys2 or sys2*sys1 is
interpreted as an entry-by-entry scalar multiplication and produces a system
with the same dimensions as sys1, whose ijth entry is sys1(i,j)*sys2.

Inversion and Related Operations
Inversion of LTI models amounts to inverting the following input/output
relationship.

This operation is defined only for square systems (that is, systems with as
many inputs as outputs) and is performed using

inv(sys)

The resulting inverse model is of the same type as sys. Related operations
include:

• Left division sys1\sys2, which is equivalent to inv(sys1)*sys2

• Right division sys1/sys2, which is equivalent to sys1*inv(sys2)

For a state-space model sys with data , inv(sys) is defined only
when is a square invertible matrix, in which case its state-space data is

Transposition
You can transpose an LTI model sys using

sys.'

This is a literal operation with the following effect:

• For TF models (with input arguments, num and den), the cell arrays num
and den are transposed.

2-15

2 Operations on LTI Models

• For ZPK models (with input arguments, z, p, and k), the cell arrays, z and
p, and the matrix k are transposed.

• For SS models (with model data), transposition produces the
state-space model AT, CT, BT, DT.

• For FRD models (with complex frequency response matrix Response), the
matrix of frequency response data at each frequency is transposed.

Pertransposition
For a continuous-time system with transfer function , the pertransposed
system has the transfer function

The discrete-time counterpart is

Pertransposition of an LTI model sys is performed using

sys'

You can use pertransposition to obtain the Hermitian (conjugate) transpose
of the frequency response of a given system. The frequency response of the
pertranspose of , , is the Hermitian transpose of the
frequency response of : .

To obtain the Hermitian transpose of the frequency response of a system sys
over a frequency range specified by the vector w, type

freqresp(sys', w);

2-16

Model Interconnection Functions

Model Interconnection Functions

In this section...

“Supported Interconnection Functions” on page 2-17

“Concatenation of LTI Models” on page 2-18

“Feedback and Other Interconnection Functions” on page 2-19

Supported Interconnection Functions
The Control System Toolbox provides a number of functions to help with the
model building process. These include model interconnection functions to
perform I/O concatenation ([,], [;], and append), general parallel and series
connections (parallel and series), and feedback connections (feedback and
lft). These functions are useful to model open- and closed-loop systems.

Interconnection
Operator Description

[,] Concatenates horizontally

[;] Concatenates vertically

append Appends models in a block diagonal configuration

augstate Augments the output by appending states

connect Forms an SS model from a block diagonal LTI object
for an arbitrary interconnection matrix

feedback Forms the feedback interconnection of two models

lft Produces the LFT interconnection (Redheffer Star
product) of two models

parallel Forms the generalized parallel connection of two
models

series Forms the generalized series connection of two models

2-17

2 Operations on LTI Models

Concatenation of LTI Models
LTI model concatenation is done in a manner similar to the way you
concatenate matrices in MATLAB, using

sys = [sys1 , sys2] % horizontal concatenation
sys = [sys1 ; sys2] % vertical concatenation
sys = append(sys1,sys2) % block diagonal appending

In I/O terms, horizontal and vertical concatenation have the following
block-diagram interpretations (with and denoting the transfer
matrices of sys1 and sys2).

You can use concatenation as an easy way to create MIMO transfer functions
or zero-pole-gain models. For example,

H = [tf(1,[1 0]) 1 ; 0 tf([1 -1],[1 1])]

specifies

2-18

Model Interconnection Functions

Use

append(sys1,sys2)

to specify the block-decoupled LTI model interconnection.

See append for more information on this function.

Feedback and Other Interconnection Functions
The following LTI model interconnection functions are useful for specifying
closed- and open-loop model configurations:

• feedback puts two LTI models with compatible dimensions in a feedback
configuration.

• series connects two LTI models in series.

• parallel connects two LTI models in parallel.

• lft performs the Redheffer star product on two LTI models.

• connect works with append to apply an arbitrary interconnection scheme
to a set of LTI models.

2-19

2 Operations on LTI Models

For example, if sys1 has m inputs and p outputs, while sys2 has p inputs and
m outputs, then the negative feedback configuration of these two LTI models

is realized with

feedback(sys1,sys2)

This specifies the LTI model with m inputs and p outputs whose I/O map is

See the reference pages online for more information on feedback, series,
parallel, lft, and connect.

2-20

Continuous/Discrete Conversions of LTI Models

Continuous/Discrete Conversions of LTI Models

In this section...

“Supported Conversion Functions and Methods” on page 2-21

“Zero-Order Hold” on page 2-21

“First-Order Hold” on page 2-23

“Impulse Invariance” on page 2-24

“Tustin Approximation” on page 2-27

“Tustin with Frequency Prewarping” on page 2-28

“Matched Poles and Zeros” on page 2-28

“Discretization of Systems with Delays” on page 2-28

Supported Conversion Functions and Methods
The function c2d discretizes continuous-time TF, SS, or ZPK models.
Conversely, d2c converts discrete-time TF, SS, or ZPK models to continuous
time. Several discretization/interpolation methods are supported, including
zero-order hold (ZOH), first-order hold (FOH), Tustin approximation with or
without frequency prewarping, and matched poles and zeros.

The syntax

sysd = c2d(sysc,Ts); % Ts = sampling period in seconds
sysc = d2c(sysd);

performs ZOH conversions by default. To use alternative conversion schemes,
specify the desired method as an extra string input:

sysd = c2d(sysc,Ts,'foh'); % use first-order hold
sysc = d2c(sysd,'tustin'); % use Tustin approximation

Zero-Order Hold
Zero-order hold (ZOH) devices convert sampled signals to continuous-time
signals for analyzing sampled continuous-time systems. The zero-order-hold

2-21

2 Operations on LTI Models

discretization of a continuous-time LTI model is depicted in
the following block diagram.

The ZOH device generates a continuous input signal u(t) by holding each
sample value u[k] constant over one sample period.

The signal is then fed to the continuous system , and the resulting
output is sampled every seconds to produce .

Conversely, given a discrete system , the d2c conversion produces a
continuous system whose ZOH discretization coincides with .
This inverse operation has the following limitations:

• d2c cannot operate on LTI models with poles at when the ZOH is
used.

• Negative real poles in the domain are mapped to pairs of complex poles
in the domain. As a result, the d2c conversion of a discrete system with
negative real poles produces a continuous system with higher order.

The next example illustrates the behavior of d2c with real negative poles.
Consider the following discrete-time ZPK model.

hd = zpk([],-0.5,1,0.1)
Zero/pole/gain:

1

(z+0.5)

2-22

Continuous/Discrete Conversions of LTI Models

Sampling time: 0.1

Use d2c to convert this model to continuous-time

hc = d2c(hd)

and you get a second-order model.

Zero/pole/gain:
4.621 (s+149.3)

(s^2 + 13.86s + 1035)

Discretize the model again

c2d(hc,0.1)

and you get back the original discrete-time system (up to canceling the
pole/zero pair at z=-0.5):

Zero/pole/gain:
(z+0.5)

(z+0.5)^2

Sampling time: 0.1

First-Order Hold
First-order hold (FOH) differs from ZOH by the underlying hold mechanism.
To turn the input samples into a continuous input , FOH uses linear
interpolation between samples.

This method is generally more accurate than ZOH for systems driven by
smooth inputs. Due to causality constraints, this option is only available for
c2d conversions, and not d2c conversions.

2-23

2 Operations on LTI Models

Note This FOH method differs from standard causal FOH and is more
appropriately called triangle approximation (see [2], p. 151). It is also known
as ramp-invariant approximation because it is distortion-free for ramp inputs.

Impulse Invariance
The impulse invariant mapping matches the discretized impulse response to
that of the continuous time system. For example:

n=1;d=[1 1]; % Simple 1st order continuous system
sc=ss(tf(n,d)); % state space representation
sd1=c2d(sc,0.01,'imp'); % Convert to discrete system via impulse

% invariant
impulse(sc,sd1) % Plot both impulse responses

Note that the impulse responses match. The frequency responses do not
match, however, because of scaling factor Ts, the sample time. For example,

2-24

Continuous/Discrete Conversions of LTI Models

bode(sc,0.01*sd1) % scaled by Ts

Although the impulse invariant transform is ideal when you are interested
in matching the impulse response, it may not be a good choice if you are
interested in matching the frequency response of the continuous system,
because it is susceptible to aliasing. For example,

sd2=c2d(sc,0.2,'imp');
sd3 = c2d(sc,0.5,'imp');
bode(sc,0.01*sd1, 0.2*sd2, 0.5*sd3)

2-25

2 Operations on LTI Models

As the sampling time increases, you can see the effects of aliasing. In general,
if you are interested in matching the frequency response of the continuous
system, a bilinear transform (such as “Tustin Approximation” on page 2-27)
is a better choice. For example, using the tustin bilinear transform for the
same example,

bode(sc,c2d(sc,0.01,'tustin'))
c2d(sc,0.2,'tustin')
c2d(sc,0.5,'tustin'))

2-26

Continuous/Discrete Conversions of LTI Models

you can see that aliasing is no longer an issue.

See any standard text in digital signal processing for a discussion of impulse
invariance scaling issues and aliasing.

Tustin Approximation
The Tustin or bilinear approximation uses the approximation

to relate s-domain and z-domain transfer functions. In c2d conversions, the
discretization of a continuous transfer function is derived by

2-27

2 Operations on LTI Models

Similarly, the d2c conversion relies on the inverse correspondence

Tustin with Frequency Prewarping
This variation of the Tustin approximation uses the correspondence

This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the frequency .

Matched Poles and Zeros
The matched pole-zero method applies only to SISO systems. The continuous
and discretized systems have matching DC gains and their poles and zeros
correspond in the transformation

See [2] for more details.

Discretization of Systems with Delays
You can also use c2d to discretize SISO or MIMO continuous-time models
with time delays. If Ts is the sampling period used for discretization:

• A delay of tau seconds in the continuous-time model is mapped to a delay of
k sampling periods in the discretized model, where k = fix(tau/Ts).

• The residual fractional delay tau - k*Ts is absorbed into the coefficients of
the discretized model (for the zero-order-hold and first-order-hold methods
only).

2-28

Continuous/Discrete Conversions of LTI Models

For example, to discretize the transfer function

using zero-order hold on the input, and a 10 Hz sampling rate, type

h = tf(10,[1 3 10],'inputdelay',0.25);
hd = c2d(h,0.1)

This produces the discrete-time transfer function

Transfer function:
0.01187 z^2 + 0.06408 z + 0.009721

z^(-3) * ----------------------------------
z^2 - 1.655 z + 0.7408

Sampling time: 0.1

Here the input delay in amounts to 2.5 times the sampling period of 0.1
seconds. Accordingly, the discretized model hd inherits an input delay of two
sampling periods, as confirmed by the value of hd.inputdelay. The residual
half-period delay is factored into the coefficients of hd by the discretization
algorithm.

The step responses of the continuous and discretized models are compared in
the figure below. This plot was produced by the command

step(h,'--',hd,'-')

2-29

2 Operations on LTI Models

Note The Tustin and matched pole/zero methods are accurate only for delays
that are integer multiples of the sampling period. It is therefore preferable to
use the zoh and foh discretization methods for models with delays.

2-30

Resampling of Discrete-Time Models

Resampling of Discrete-Time Models
You can resample a discrete-time TF, SS, or ZPK model sys1 by typing

sys2 = d2d(sys1,Ts)

The new sampling period Ts does not have to be an integer multiple of the
original sampling period. For example, typing

h1 = tf([1 0.4],[1 -0.7],0.1);
h2 = d2d(h1,0.25);

resamples h1 at the sampling period of 0.25 seconds, rather than 0.1 seconds.

You can compare the step responses of h1 and h2 by typing

step(h1,'--',h2,'-')

The resulting plot is shown on the figure below (h1 is the dashed line).

2-31

2 Operations on LTI Models

2-32

References

References
[1] Åström, K.J. and B. Wittenmark, Computer-Controlled Systems: Theory
and Design, Prentice-Hall, 1990, pp. 48-52.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of
Dynamic Systems, Second Edition, Addison-Wesley, 1990.

2-33

2 Operations on LTI Models

2-34

3

Model Analysis Tools

General Model Characteristics
(p. 3-2)

Tests you can use to determine
characteristics such as the number
of I/O pairs, the sample time if your
system is discrete, and so on

Model Dynamics (p. 3-4) How to determine system poles
and zeros, natural frequency and
damping, and other model dynamics

State-Space Realizations (p. 3-7) Analyzing state-space
characteristics, such as
controllability and observability

3 Model Analysis Tools

General Model Characteristics
General model characteristics include the model type, I/O dimensions, and
continuous or discrete nature. Related commands are listed in the table
below. These commands operate on continuous- or discrete-time LTI models
or arrays of LTI models of any type.

General Model
Characteristics
Commands Description

class Display model type ('tf', 'zpk', 'ss', or 'frd').

hasdelay Test true if LTI model has any type of delay.

isa Test true if LTI model is of specified class.

isct Test true for continuous-time models.

isdt Test true for discrete-time models.

isempty Test true for empty LTI models.

isproper Test true for proper LTI models.

issiso Test true for SISO models.

ndims Display the number of model/array dimensions.

reshape Change the shape of an LTI array.

size Output/input/array dimensions. Used with
special syntax, size also returns the number of
state dimensions for state-space models, and the
number of frequencies in an FRD model.

This example illustrates the use of some of these commands. See the related
reference pages for more details.

H = tf({1 [1 -1]},{[1 0.1] [1 2 10]})

Transfer function from input 1 to output:
1

3-2

General Model Characteristics

s + 0.1

Transfer function from input 2 to output:
s - 1

s^2 + 2 s + 10

class(H)

ans =
tf

size(H)
Transfer function with 2 input(s) and 1 output(s).

[ny,nu] = size(H) % Note: ny = number of outputs

ny =
1

nu =
2

isct(H) % Is this system continuous?

ans =
1

isdt(H) % Is this system discrete?

ans =
0

3-3

3 Model Analysis Tools

Model Dynamics
The Control System Toolbox offers commands to determine the system
poles, zeros, DC gain, norms, etc. You can apply these commands to single
LTI models or LTI arrays. The following table gives an overview of these
commands.

Model Dynamics

covar Covariance of response to white noise.

damp Natural frequency and damping of system poles.

dcgain Low-frequency (DC) gain.

dsort Sort discrete-time poles by magnitude.

esort Sort continuous-time poles by real part.

norm Norms of LTI systems (and).

pole, eig System poles.

pzmap Pole/zero map.

zero System transmission zeros.

With the exception of norm, these commands are not supported for FRD
models.

Here is an example of model analysis using some of these commands.

h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60])

Transfer function:
4 s^3 + 8.4 s^2 + 30.8 s + 60

s^4 + 4.12 s^3 + 17.4 s^2 + 30.8 s + 60

pole(h)

ans =
-1.7971 + 2.2137i

3-4

Model Dynamics

-1.7971 - 2.2137i
-0.2629 + 2.7039i
-0.2629 - 2.7039i

zero(h)
ans =

-0.0500 + 2.7382i
-0.0500 - 2.7382i
-2.0000

dcgain(h)

ans =
1

[ninf,fpeak] = norm(h,inf) % peak gain of freq. response

ninf =
1.3402 % peak gain
fpeak =
1.8537 % frequency where gain peaks

These functions also operate on LTI arrays and return arrays. For example,
the poles of a three dimensional LTI array sysarray are obtained as follows.

sysarray = tf(rss(2,1,1,3))
Model sysarray(:,:,1,1)
=======================
Transfer function:

-0.6201 s - 1.905

s^2 + 5.672 s + 7.405

Model sysarray(:,:,2,1)
=======================
Transfer function:

0.4282 s^2 + 0.3706 s + 0.04264

s^2 + 1.056 s + 0.1719

Model sysarray(:,:,3,1)
=======================

3-5

3 Model Analysis Tools

Transfer function:
0.621 s + 0.7567

s^2 + 2.942 s + 2.113

3x1 array of continuous-time transfer functions.
pole(sysarray)
ans(:,:,1) =

-3.6337
-2.0379

ans(:,:,2) =
-0.8549
-0.2011

ans(:,:,3) =
-1.6968
-1.2452

3-6

State-Space Realizations

State-Space Realizations
The following functions are useful to analyze, perform state coordinate
transformations on, and derive canonical state-space realizations for single
state-space LTI models or LTI arrays of state-space models.

State-Space Realizations

canon Canonical state-space realizations.

ctrb Controllability matrix.

ctrbf Controllability staircase form.

gram Controllability and observability gramians.

obsv Observability matrix.

obsvf Observability staircase form.

ss2ss State coordinate transformation.

ssbal Diagonal balancing of state-space
realizations.

The function ssbal uses a simple diagonal similarity transformation

to balance the state-space data . This is accomplished by reducing
the norm of the matrix.

Such balancing usually improves the numerical conditioning of subsequent
state-space computations. Note that conversions to state-space using ss
produce balanced realizations of transfer functions and zero-pole-gain models.

By contrast, the canonical realizations produced by canon, ctrbf, or obsvf
are often badly scaled, sensitive to perturbations of the data, and poorly

3-7

3 Model Analysis Tools

suited for state-space computations. Consequently, it is wise to use them only
for analysis purposes and not in control design algorithms.

3-8

4

Arrays of LTI Models

Concept of an LTI Array (p. 4-2) What is an LTI array?

Dimensions, Size, and Shape of an
LTI Array (p. 4-8)

How to understand the dimensions
of complex LTI arrays.

Building LTI Arrays (p. 4-13) Constructing LTI arrays from
collections of LTI models.

Indexing into LTI Arrays (p. 4-22) How to access elements of an LTI
array.

Operations on LTI Arrays (p. 4-27) Building LTI arrays from smaller
ones.

4 Arrays of LTI Models

Concept of an LTI Array

In this section...

“What is an LTI Array?” on page 4-2

“When to Use an LTI Array” on page 4-2

“When to Collect a Set of Models in an LTI Array” on page 4-3

“Restrictions for LTI Models Collected in an Array” on page 4-3

“Where to Find Information on LTI Arrays” on page 4-4

“Visualizing LTI Arrays” on page 4-4

“Higher Dimensional Arrays of LTI Models” on page 4-6

What is an LTI Array?
LTI arrays are arrays that store an LTI models as one element in the array.
Since an array in MATLAB can be treated as a single variable, so can an
LTI array. This means that you can operate on, say, 100 LTI models by one
operations on a single variable—making LTI arrays a powerful tool if you have
large numbers of LTI models to consider in your analysis and design process.

Because LTI arrays are multidimensional in nature, there is a large set of
topics that relate to them. This section discusses these topics:

When to Use an LTI Array
In many applications, it is useful to consider collections of linear, time
invariant (LTI) models. For example, you may want to consider a model with
a single parameter that varies, such as

sys1 = tf(1, [1 1 1]);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 3]);

and so on. A convenient way to store and analyze a collection like this is to
use LTI arrays. Continuing this example, you can create this LTI array and
store all three transfer functions in one variable.

4-2

Concept of an LTI Array

sys_ltia = (sys1, sys2, sys3);

You can use the LTI array sys_ltia just like you would use, for example, sys1.

You can use LTI arrays to collect a set of LTI models into a single MATLAB
variable. You then use this variable to manipulate or analyze the entire
collection of models in a vectorized fashion. You access the individual models
in the collection through indexing rather than by individual model names.

LTI arrays extend the concept of single LTI models in a similar way to how
multidimensional arrays extend two-dimensional matrices in MATLAB (see
Multidimensional Arrays in the MATLAB documentation).

When to Collect a Set of Models in an LTI Array
You can use LTI arrays to represent

• A set of LTI models arising from the linearization of a nonlinear system
at several operating points

• A collection of transfer functions that depend on one or more parameters

• A set of LTI models arising from several system identification experiments
applied to one plant

• A set of gain-scheduled LTI controllers

• A list of LTI models you want to collect together under the same name

Restrictions for LTI Models Collected in an Array
For each model in an LTI array, the following properties must be the same:

• The number of inputs and outputs

• The sample time, for discrete-time models

• The I/O names and I/O groups

Note You cannot specify Simulink LTI blocks with LTI arrays.

4-3

4 Arrays of LTI Models

Where to Find Information on LTI Arrays
The next two sections give examples that illustrate how to visualize an LTI
array, its dimensions, and size. To read about how to build an LTI array, go to
“Building LTI Arrays” on page 4-13. The remainder of the chapter is devoted
to indexing and operations on LTI arrays. You can also apply the analysis
functions in the Control System Toolbox to LTI arrays. See Chapter 3, “Model
Analysis Tools” for more information on these functions. You can also view
response plots of LTI arrays with the LTI Viewer.

Visualizing LTI Arrays
To visualize the concept of an LTI array, consider the set of five transfer
function models shown below. In this example, each model has two inputs and
two outputs. They differ by parameter variations in the individual model
components.

Five LTI Models to be Collected in an LTI Array

4-4

Concept of an LTI Array

An LTI Array Containing These Five Models

Just as you might collect a set of two-by-two matrices in a multidimensional
array, you can collect this set of five transfer function models as a list in an
LTI array under one variable name, say, sys. Each element of the LTI array
is an LTI model.

Individual models in the LTI array sys are accessed via indexing. The general
form for the syntax you use to access data in an LTI array is

For example, you can access the third model in sys with sys(:,:,3). The
following illustrates how you can use indexing to select models or their
components from sys.

4-5

4 Arrays of LTI Models

Using Indices to Select Models and Their Components

See “Concept of an LTI Array” on page 4-2 for more information on indexing.

Higher Dimensional Arrays of LTI Models
You can also collect a set of models in a two-dimensional array. The following
diagram illustrates a 2-by-3 array of six, two-output, one-input models called
m2d.

4-6

Concept of an LTI Array

m2d: A 2-by-3 Array of Two-Output, One-Input Models

More generally, you can organize models into a 3-D or higher-dimensional
array, in much the same way you arrange numerical data into
multidimensional arrays (see Multidimensional Arrays in the MATLAB
documentation).

4-7

4 Arrays of LTI Models

Dimensions, Size, and Shape of an LTI Array

In this section...

“I/O and Array Dimensions of LTI Arrays” on page 4-8

“Accessing the Dimensions of an LTI Array Using size and ndims” on page
4-10

“Using reshape to Rearrange an LTI Array” on page 4-12

I/O and Array Dimensions of LTI Arrays
The dimensions and size of a single LTI model are determined by the output
and input channels. An array of LTI models has additional quantities that
determine its dimensions, size, and shape.

There are two sets of dimensions associated with LTI arrays:

• The I/O dimensions—the output dimension and input dimension common
to all models in the LTI array

• The array dimensions—the dimensions of the array of models itself

The size of the LTI array is determined by:

• The lengths of the I/O dimensions—the number of outputs (or inputs)
common to all models in the LTI array

• The length of each array dimension—the number of models along that
array dimension

The next figure illustrates the concepts of dimension and size for the LTI
array m2d, a 2-by-3 array of one-input, two-output transfer function models.

4-8

Dimensions, Size, and Shape of an LTI Array

Dimensions and Size of m2d, an LTI Array

You can load this sample LTI array into your workspace by typing

load LTIexamples
size(m2d)
2x3 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 input.

The I/O dimensions correspond to the row and column dimensions of the
transfer matrix. The two I/O dimensions are both of length 1 for SISO models.
For MIMO models the lengths of these dimensions are given by the number
of outputs and inputs of the model.

Five related quantities are pertinent to understanding the array dimensions:

4-9

4 Arrays of LTI Models

• N, the number of models in the LTI array

• K, the number of array dimensions

• , the list of lengths of the array dimensions

- is the number of models along the dimension.

• , the configuration of the models in the
array

- The configuration determines the shape of the array.

- The product of these integers is N.

In the example model m2d,:

• The length of the output dimension, the first I/O dimension, is 2, since
there are two output channels in each model.

• The length of the input dimension, the second I/O dimension, is 1, since
there is only one input channel in each model.

• N, the number of models in the LTI array, is 6.

• K, the number of array dimensions, is 2.

• The array dimension lengths are [2 3].

• The array configuration is 2-by-3.

Accessing the Dimensions of an LTI Array Using size
and ndims
You can access the dimensions and shape of an LTI array using

• size to determine the lengths of each of the dimensions associated with
an LTI array

• ndims to determine the total number of dimensions in an LTI array

When applied to an LTI array, size returns

[Ny Nu S1 S2 ... Sk]

where

4-10

Dimensions, Size, and Shape of an LTI Array

• Ny is the number of outputs common to all models in the LTI array.

• Nu is the number of inputs common to all models in the LTI array.

• S1 S2 ... Sk are the lengths of the array dimensions of a k-dimensional
array of models. Si is the number of models along the ith array dimension.

Note the following when using the size function:

• By convention, a single LTI model is treated as a 1-by-1 array of models.

For single LTI models, size returns only the I/O dimensions [Ny Nu].

• For LTI arrays, size always returns at least two array dimensions. For
example, the size of a 2-by-1 LTI array in [Ny Nu 2 1]

• size ignores trailing singleton dimensions beyond the second array
dimension. For example, size returns [Ny Nu 2 3] for a 2-by-3-by-1-by-1
LTI array of models with Ny outputs and Nu inputs.

The function ndims returns the total number of dimensions in an LTI array:

• 2, for single LTI models

• 2 + p, for LTI arrays, where p (greater than 2) is the number of array
dimensions

Note that

ndims (sys) = length(size(sys))

To see how these work on the sample 2-by-3 LTI array m2d of two-output,
one-input models, type

load LTIexamples
s = size(m2d)
s =

2 1 2 3

Notice that size returns a vector whose entries correspond to the length of
each of the four dimensions of m2d: two outputs and one input in a 2-by-3
array of models. Type

ndims(m2d)

4-11

4 Arrays of LTI Models

ans =
4

to see that there are indeed four dimensions attributed to this LTI array.

Using reshape to Rearrange an LTI Array
Use reshape to reorganize the arrangement (array configuration) of the
models of an existing LTI array.

For example, to arrange the models in an LTI array sys as a
array, type

reshape(sys,w1,...,wp)

where w1,...,wp are any set of integers whose product is N, the number of
models in sys.

You can reshape the LTI array m2d into a 3-by-2, a 6-by-1, or a 1-by-6 array
using reshape. For example, type

load LTIexamples
sys = reshape(m2d,6,1);
size(sys)

6x1 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 inputs.

s = size(sys)

s =
2 1 6 1

4-12

Building LTI Arrays

Building LTI Arrays

In this section...

“Ways to Build LTI Arrays” on page 4-13

“Building LTI Arrays Using for Loops” on page 4-13

“Building LTI Arrays Using the stack Function” on page 4-16

“Building LTI Arrays Using tf, zpk, ss, and frd” on page 4-18

“Generating Random LTI Arrays Using rss” on page 4-21

Ways to Build LTI Arrays
There are several ways to build LTI arrays:

• Using a for loop to assign each model in the array

• Using stack to concatenate LTI models into an LTI array

• Using tf, zpk, ss, or frd

In addition, you can use the command rss to generate LTI arrays of random
state-space models.

Building LTI Arrays Using for Loops
Consider the following second-order SISO transfer function that depends
on two parameters, and

Suppose, based on measured input and output data, you estimate confidence
intervals , and for each of the parameters, and . All of the
possible combinations of the confidence limits for these model parameter
values give rise to a set of four SISO models.

4-13

4 Arrays of LTI Models

Four LTI Models Depending on Two Parameters

You can arrange these four models in a 2-by-2 array of SISO transfer functions
called H.

The LTI Array H

Here, for , represents the transfer function

corresponding to the parameter values and .

The first two colon indices () select all I/O channels from the I/O dimensions
of H. The third index of H refers to the first array dimension (), while the
fourth index is for the second array dimension ().

4-14

Building LTI Arrays

Suppose the limits of the ranges of values for and are [0.66,0.76] and
[1.2,1.5], respectively. Enter these at the command line.

zeta = [0.66,0.75];
w = [1.2,1.5];

Since the four models have the same parametric structure, it’s convenient to
use two nested for loops to construct the LTI array.

for i = 1:2
for j = 1:2

H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);
end

end

H now contains the four models in a 2-by-2 array. For example, to display the
transfer function in the (1,2) position of the array, type

H(:,:,1,2)

Transfer function:
2.25

s^2 + 1.98 s + 2.25

For the purposes of efficient computation, you can initialize an LTI array to
zero, and then reassign the entire array to the values you want to specify. The
general syntax for zero assignment of LTI arrays is

4-15

4 Arrays of LTI Models

To initialize H in the above example to zero, type

H = tf(zeros(1,1,2,2));

before you implement the nested for loops.

Building LTI Arrays Using the stack Function
Another way to build LTI arrays is using the function stack. This function
operates on single LTI models as well as LTI arrays. It concatenates a list of
LTI arrays or single LTI models only along the array dimension. The general
syntax for stack is

stack(Arraydim,sys1,sys2...)

where

• Arraydim is the array dimension along which to concatenate the LTI
models or arrays.

• sys1, sys2, ... are the LTI models or LTI arrays to be concatenated.

4-16

Building LTI Arrays

When you concatenate several models or LTI arrays along the jth array
dimension, such as in

stack(j,sys1,sys2,...,sysn)

• The lengths of the I/O dimensions of sys1,...,sysn must all match.

• The lengths of all but the jth array dimension of sys1,...,sysn must
match.

For example, if two TF models sys1 and sys2 have the same number of inputs
and outputs,

sys = stack(1,sys1,sys2)

concatenates them into a 2-by-1 array of models.

There are two principles that you should keep in mind:

• stack only concatenates along an array dimension, not an I/O dimension.

• To concatenate LTI models or LTI arrays along an input or output
dimension, use the bracket notation ([,] [;]). See “Model Interconnection
Functions” on page 2-17 for more information on the use of bracket notation
to concatenate models. See also “Special Cases for Operations on LTI
Arrays” on page 4-30 for some examples of this type of concatenation of
LTI arrays.

Here’s an example of how to build the LTI array H using the function stack.

% Set up the parameter vectors.

zeta = [0.66,0.75];

w = [1.2,1.5];

% Specify the four individual models with those parameters.

%

H11 = tf(w(1)^2,[1 2*zeta(1)*w(1) w(1)^2]);

H12 = tf(w(2)^2,[1 2*zeta(1)*w(2) w(2)^2]);

H21 = tf(w(1)^2,[1 2*zeta(2)*w(1) w(1)^2]);

H22 = tf(w(2)^2,[1 2*zeta(2)*w(2) w(2)^2]);

4-17

4 Arrays of LTI Models

% Set up the LTI array using stack.

COL1 = stack(1,H11,H21); % The first column of the 2-by-2 array

COL2 = stack(1,H12,H22); % The second column of the 2-by-2 array

H = stack(2, COL1, COL2); % Concatenate the two columns of models.

Notice that this result is very different from the single MIMO LTI model
returned by

H = [H11,H12;H21,H22];

Accessing LTI Arrays of Variable Order
For arrays of state-space models with variable order, you cannot use the dot
operator (e.g., sys.a) to access arrays. Use the syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the cell
arrays a, b, c, and d.

Building LTI Arrays Using tf, zpk, ss, and frd
You can also build LTI arrays using the tf, zpk, ss, and frd constructors.
You do this by using multidimensional arrays in the input arguments for
these functions.

Specifying Arrays of TF models Using tf
For TF models, use

sys = tf(num,den)

where

• Both num and den are multidimensional cell arrays the same size as sys
(see “Accessing the Dimensions of an LTI Array Using size and ndims” on
page 4-10).

4-18

Building LTI Arrays

• sys(i,j,n1,...,nK) is the (i, j) entry of the transfer matrix for the model
located in the position of the array.

• num(i,j,n1,...,nK) is a row vector representing the numerator polynomial of
sys(i,j,n1,...,nK).

• den(i,j,n1,...,nK) is a row vector representing denominator polynomial of
sys(i,j,n1,...,nK).

See “MIMO Transfer Function Models” on page 1-14 for related information
on the specification of single TF models.

Specifying Arrays of ZPK Models Using zpk
For ZPK models, use

sys = zpk(zeros,poles,gains)

where

• Both zeros and poles are multidimensional cell arrays whose cell entries
contain the vectors of zeros and poles for each I/O pair of each model in
the LTI array.

• gains is a multidimensional array containing the scalar gains for each
I/O pair of each model in the array.

• The dimensions (and their lengths) of zeros, poles, and gains, determine
those of the LTI array, sys.

Specifying Arrays of SS Models Using ss
To specify arrays of SS models, use

sys = ss(a,b,c,d)

where a, b, c, and d are real- or complex-valued multidimensional arrays of
appropriate dimensions. All models in the resulting array of SS models have
the same number of states, outputs, and inputs.

4-19

4 Arrays of LTI Models

Note You cannot use the ss constructor to build an array of state-space
models with different numbers of states. Use stack to build such LTI arrays.

The Size of LTI Array Data for SS Models
The size of the model data for arrays of state-space models is summarized
in the following table.

Data Size (Data)

a

b

c

d

where

• is the maximum of the number of states in each model in the array.

• is the number of inputs in each model.

• is the number of outputs in each model.

• are the lengths of the array dimensions.

Specifying Arrays of FRD Models Using frd
To specify a K-dimensional array of p-output, m-input FRD models for which

are the lengths of the array dimensions, use

sys = frd(response,frequency,units)

where

4-20

Building LTI Arrays

• frequency is a real vector of n frequency data points common to all FRD
models in the LTI array.

• response is a p-by-m-by-n-by- -by- -by- complex-valued
multidimensional array.

• units is the optional string specifying ’rad/s’ or ’Hz’.

Note that for specifying an LTI array of SISO FRD models, response can also
be a multidimensional array of 1-by-n matrices whose remaining dimensions
determine the array dimensions of the FRD.

Generating Random LTI Arrays Using rss
A convenient way to generate arrays of state-space models with the same
number of states in each model is to use rss. The syntax is

rss(N,P,M,sdim1,...,sdimk)

where

• N is the number of states of each model in the LTI array.

• P is the number of outputs of each model in the LTI array.

• M is the number of inputs of each model in the LTI array.

• sdim1,...,sdimk are the lengths of the array dimensions.

For example, to create a 4-by-2 array of random state-space models with three
states, one output, and one input, type

sys = rss(3,2,1,4,2);
size(sys)

4x2 array of continuous-time state-space models
Each model has 2 outputs, 1 input, and 3 states.

4-21

4 Arrays of LTI Models

Indexing into LTI Arrays

In this section...

“When to Index into LTI Arrays” on page 4-22

“Organization of Indices” on page 4-22

“Note on Indexing into LTI Arrays of FRD Models” on page 4-23

“Accessing Particular Models in an LTI Array” on page 4-23

“Extracting LTI Arrays of Subsystems” on page 4-24

“Reassigning Parts of an LTI Array” on page 4-25

“Deleting Parts of an LTI Array” on page 4-26

When to Index into LTI Arrays
You can index into LTI arrays in much the same way as you would for
multidimensional arrays to

• Access models

• Extract subsystems

• Reassign parts of an LTI array

• Delete parts of an LTI array

Organization of Indices
When you index into an LTI array sys, the indices should be organized
according to the following format

where

• Outputs are indices that select output channels.

• Inputs are indices that select input channels.

• are indices into the array dimensions that select one model or a
subset of models in the LTI array.

4-22

Indexing into LTI Arrays

Note on Indexing into LTI Arrays of FRD Models
For FRD models, the array indices can be followed by the keyword
'frequency' and some expression selecting a subset of the frequency points
as in

sys (outputs, inputs, n1,...,nk, 'frequency', SelectedFreqs)

See “Referencing FRD Models Through Frequencies” on page 2-8 for details
on frequency point selection in FRD models.

Accessing Particular Models in an LTI Array
To access any given model in an LTI array:

• Use colon arguments (:,:) for the first two indices to select all I/O
channels.

• The remaining indices specify the model coordinates within the array.

For example, if sys is a 5-by-2 array of state-space models defined by

sys = rss(4,3,2,5,2);

you can access (and display) the model located in the (3,2) position of the
array sys by typing

sys(:,:,3,2)

If sys is a 5-by-2 array of 3-output, 2-input FRD models, with frequency
vector [1,2,3,4,5], then you can access the response data corresponding to
the middle frequency (3 rad/s), of the model in the (3,1) position by typing

sys(:,:,3,1,'frequency',3.0)

To access all frequencies of this model in the array, you can simply type

sys(:,:,3,1)

4-23

4 Arrays of LTI Models

Single Index Referencing of Array Dimensions
You can also access models using single index referencing of the array
dimensions.

For example, in the 5-by-2 LTI array sys above, you can also access the model
located in the (3,2) position by typing

sys(:,:,8)

since this model is in the eighth position if you were to list the 10 models in the
array by successively scanning through its entries along each of its columns.

For more information on single index referencing, see Linear Indexing in
the MATLAB online documentation.

Extracting LTI Arrays of Subsystems
To select a particular subset of I/O channels from all the models in an LTI
array, use the syntax described in “Extracting and Modifying Subsystems” on
page 2-5. For example,

sys = rss(4,3,2,5,2);
A = sys(1, [1 2])

or equivalently,

A = sys(1,[1 2],:,:)

selects the first two input channels, and the first output channel in each
model of the LTI array A, and returns the resulting 5-by-2 array of one-output,
two-input subsystems.

You can also combine model selection with I/O selection within an LTI array.
For example, to access both:

• The state-space model in the (3,2) array position

• Only the portion of that model relating the second input to the first output

type

4-24

Indexing into LTI Arrays

sys(1,2,3,2)

To access the subsystem from all inputs to the first two output channels of
this same array entry, type

sys(1:2,:,3,2)

Reassigning Parts of an LTI Array
You can reassign entire models or portions of models in an LTI array. For
example,

sys = rss(4,3,2,5,2); % 5X2 array of state-space models
H = rss(4,1,1,5,2); % 5X2 array of SISO models
sys(1,2) = H

reassigns the subsystem from input two to output one, for all models in the
LTI array sys. This SISO subsystem of each model in the LTI array is replaced
with the LTI array H of SISO models. This one-line assignment command is
equivalent to the following 10-step nested for loop.

for k = 1:5
for j = 1:2

sys(1,2,k,j) = H(:,:,k,j);
end

end

Notice that you don’t have to use the array dimensions with this assignment.
This is because I/O selection applies to all models in the array when the array
indices are omitted.

Similarly, the commands

sys(:,:,3,2) = sys(:,:,4,1);
sys(1,2,3,2) = 0;

reassign the entire model in the (3,2) position of the LTI array sys and the
(1,2) subsystem of this model, respectively.

4-25

4 Arrays of LTI Models

Deleting Parts of an LTI Array
You can use indexing to delete any part of an LTI array by reassigning it to
be empty ([]). For instance,

sys = rss(4,3,2,5,2);
sys(1,:) = [];
size(sys)

5x2 array of continuous-time state-space models
Each model has 2 outputs, 2 inputs, and 4 states.

deletes the first output channel from every model of this LTI array.

Similarly,

sys(:,:,[3 4],:) = []

deletes the third and fourth rows of this two-dimensional array of models.

4-26

Operations on LTI Arrays

Operations on LTI Arrays

In this section...

“Supported Operations on LTI Arrays” on page 4-27

“Example: Addition of Two LTI Arrays” on page 4-28

“Dimension Requirements” on page 4-29

“Special Cases for Operations on LTI Arrays” on page 4-30

“Other Operations on LTI Arrays” on page 4-32

Supported Operations on LTI Arrays
Using LTI arrays, you can apply almost all of the basic model operations
that work on single LTI models to entire sets of models at once. These basic
operations include

• The arithmetic operations: +, -, *, /,\,',.'

• The functions: concatenation along I/O dimensions ([,], [;]), feedback,
append, series, parallel, and lft

When you apply any of these operations to two (or more) LTI arrays (for
example, sys1 and sys2), the operation is implemented on a model-by-model
basis. Therefore, the kth model of the resulting LTI array is derived from
the application of the given operation to the kth model of sys1 and the kth
model of sys2.

For example, if sys1 and sys2 are two LTI arrays and

sysa = op(sys1,sys2)

then the kth model in the resulting LTI array sys is obtained by adding the
kth models in sys1 to the kth model in sys2

sysa(:,:,k) = sys1(:,:,k) + sys2(:,:,k)

You can also apply any of the response plotting functions such as step, bode,
and nyquist to LTI arrays. These plotting functions are also applied on a
model by model basis.

4-27

4 Arrays of LTI Models

Example: Addition of Two LTI Arrays
The following diagram illustrates the addition of two 3-by-1 LTI arrays
sys1+sys2.

Addition of Two LTI Arrays

The summation of these LTI arrays

sysa = sys1+sys2

is equivalent to the following model-by-model summation:

for k = 1:3
sysa(:,:,k)=sys1(:,:,k) + sys2(:,:,k)

end

Note that:

4-28

Operations on LTI Arrays

• Each model in sys1 and sys2 must have the same number of inputs and
outputs. This is required for the addition of two LTI arrays.

• The lengths of the array dimensions of sys1 and sys2 must match.

The following sections describe these topics:

• “Dimension Requirements” on page 4-29

• “Special Cases for Operations on LTI Arrays” on page 4-30

• “Other Operations on LTI Arrays” on page 4-32

Dimension Requirements
In general, when you apply any of these basic operations to two or more
LTI arrays:

• The I/O dimensions of each of the LTI arrays must be compatible with
the requirements of the operation.

• The lengths of array dimensions must match.

The I/O dimensions of each model in the resulting LTI array are determined
by the operation being performed. See Chapter 2, “Operations on LTI Models”
for requirements on the I/O dimensions for the various operations.

For example, if sys1 and sys2 are both 1-by-3 arrays of LTI models with
two inputs and two outputs, and sys3 is a 1-by-3 array of LTI models with
two outputs and 1 input, then

sys1 + sys2

is an LTI array with the same dimensions as sys1 and sys2.

sys1 * sys3

is a 1-by-3 array of LTI models with two outputs and one input, and

[sys1,sys3]

is a 1-by-3 array of LTI models with two outputs and three inputs.

4-29

4 Arrays of LTI Models

Special Cases for Operations on LTI Arrays
There are some special cases in coding operations on LTI arrays.

Consider

sysa = op(sys1,sys2)

where op is a symbol for the operation being applied. sys1 is an LTI array,
and sysa (the result of the operation) is an LTI array with the same array
dimensions as sys1. You can use shortcuts for coding sysa = op(sys1,sys2)
in the following cases:

• For operations that apply to LTI arrays, sys2 does not have to be an array.
It can be a single LTI model (or a gain matrix) whose I/O dimensions satisfy
the compatibility requirements for op (with those of each of the models in
sys1). In this case, op applies sys2 to each model in sys1, and the kth
model in sys satisfies

sysa(:,:,k) = op(sys1(:,:,k),sys2)

• For arithmetic operations, such as +, *, /, and \, sys2 can be either a
single SISO model, or an LTI array of SISO models, even when sys1 is an
LTI array of MIMO models. This special case relies on scalar expansion
capabilities for arithmetic operations in MATLAB.

- When sys2 is a single SISO LTI model (or a scalar gain), op applies
sys2 to sys1 on an entry-by-entry basis. The ijth entry in the kth model
in sysa satisfies

sysa(i,j,k) = op(sys1(i,j,k),sys2)

- When sys2 is an LTI array of SISO models (or a multidimensional array
of scalar gains), op applies sys2 to sys1 on an entry-by-entry basis for
each model in sysa.

sysa(i,j,k) = op(sys1(i,j,k),sys2(:,:,k))

4-30

Operations on LTI Arrays

Examples of Operations on LTI Arrays with Single LTI Models
Suppose you want to create an LTI array containing three models, where, for

in the set , each model has the form

You can do this efficiently by first setting up an LTI array h containing the
SISO models and then using concatenation to form the LTI array H
of MIMO LTI models , . To do this, type

tau = [1.1 1.2 1.3];
for i=1:3 % Form LTI array h of SISO models.

h(:,:,i)=tf(1,[1 tau]);
end
H = [h 0; -1 tf(1,[1 0])]; %Concatenation: array h & single models
size(H)

3x1 array of continuous-time transfer functions
Each transfer function has 2 output(s) and 2 input(s).

Similarly, you can use append to perform the diagonal appending of each
model in the SISO LTI array h with a fixed single (SISO or MIMO) LTI model.

S = append(h,tf(1,[1 3])); % Append a single model to h.

specifies an LTI array S in which each model has the form

4-31

4 Arrays of LTI Models

You can also combine an LTI array of MIMO models and a single MIMO LTI
model using arithmetic operations. For example, if h is the LTI array of three
SISO models defined above,

[h,h] + [tf(1,[1 0]);tf(1,[1 5])]

adds the single one-output, two-input LTI model [1/s 1/(s + 5)] to every model
in the 3-by-1 LTI array of one-output, two-input models [h,h]. The result is a
new 3-by-2 array of models.

Examples: Arithmetic Operations on LTI Arrays and SISO
Models
Using the LTI array of one-output, two-input state-space models [h,h],
defined in the previous example,

tf(1,[1 3]) + [h,h]

adds a single SISO transfer function model to each entry in each model of
the LTI array of MIMO models [h,h].

Finally,

G = rand(1,1,3,1);
sysa = G + [h,h]

adds the array of scalars to each entry of each MIMO model in the LTI array
[h,h] on a model-by-model basis. This last command is equivalent to the
following for loop.

hh = [h,h];
for k = 1:3

sysa(:,:,k) = G(1,1,k) + hh(:,:,k);
end

Other Operations on LTI Arrays
You can also apply the analysis functions, such as bode, nyquist, and step, to
LTI arrays.

4-32

5

Customization
Preliminaries

Terminology (p. 5-2) The terms used in customizing tools,
viewers, and response plots

The Property and Preferences
Hierarchy (p. 5-3)

How to understand the scope of any
property or preference setting

5 Customization Preliminaries

Terminology
The Control System Toolbox provides editors that allow you to set properties
and preferences in the SISO Design Tool, the LTI Viewer, and in any response
plots that you create from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot.
This includes the following:

• Axes labels, and limits

• Data units and scales

• Plot styles, such as grids, fonts, and axes foreground colors

• Plot characteristics, such as rise time, peak response, and gain and phase
margins

Preferences refers to properties that persist either

• Within a single session for a specific instance of an LTI Viewer or a SISO
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences.

5-2

The Property and Preferences Hierarchy

The Property and Preferences Hierarchy
This diagram explains the hierarchy from properties, which are local, to
toolbox preferences, which are global and persist from session to session.

5-3

5 Customization Preliminaries

5-4

6

Setting Toolbox Preferences

Toolbox Preferences Editor (p. 6-2) An editor that allows you to set plot
preferences that persist from session
to session

Units Pane (p. 6-4) Setting frequency, magnitude, and
phase units

Style Pane (p. 6-5) How to toggle grid visibility, set
foreground colors, and so on

Options Pane (p. 6-6) Settings for response characteristics
and phase wrapping

SISO Tool Pane (p. 6-7) Settings for the SISO Design Tool

6 Setting Toolbox Preferences

Toolbox Preferences Editor

In this section...

“Overview of the Toolbox Preferences Editor” on page 6-2

“Opening the Toolbox Preferences Editor” on page 6-2

Overview of the Toolbox Preferences Editor
The Toolbox Preferences editor allows you to set plot preferences that will
persist from session to session. This is the highest level shown in “Property
and Preferences Hierarchy”.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences editor, select Toolbox Preferences from
the File menu of the LTI Viewer or the SISO Design Tool. Alternatively,
you can type

ctrlpref

at the MATLAB prompt.

Control System Toolbox Preferences Editor

6-2

Toolbox Preferences Editor

• “Units Pane” on page 6-4

• “Style Pane” on page 6-5

• “Options Pane” on page 6-6

• “SISO Tool Pane” on page 6-7

6-3

6 Setting Toolbox Preferences

Units Pane

Use the Units pane to set preferences for the following:

• Frequency — Radians per second (rad/s) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For the frequency axis, you can select logarithmic or linear scales.

6-4

Style Pane

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots you create using the Control System Toolbox.
This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts — Set the font size, weight (bold), and angle (italic).

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Colors dialog box. See “Select colors” on page
7-10 for more information.

6-5

6 Setting Toolbox Preferences

Options Pane
The Options pane has selections for time responses and frequency responses.
This figure shows the Options pane with default settings.

The following are the available options for the Options pane:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.

- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

6-6

SISO Tool Pane

SISO Tool Pane
The SISO Tool pane has settings for the SISO Design Tool. This figure shows
the SISO Tool pane with default settings.

You can make the following selections:

• Compensator Format — You can select either the time-constant format,
natural frequency format, or the zero/pole/gain format. The time-constant
format is

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the
pole time constants.

The natural frequency format is

6-7

6 Setting Toolbox Preferences

where ωz1,ωz2, ... and ωp1, ωp2, ..., are are the natural frequencies of the
zeros and poles, respectively.

The zero/pole/gain format is a variation on the time-constant format.

In this case, the gain is compensator gain; z1, z2, ... and p1, p2, ..., are the
zero and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and
sensor poles and zeros as blue x’s and o’s, respectively. Clear this box to
eliminate the plant’s poles and zeros from the Bode plot. Note that the
compensator poles and zeros (in red) will still appear.

6-8

7

Setting Tool Preferences

Introduction (p. 7-2) A quick comparison of setting
preferences in the LTI Viewer and
Graphcial Tuning Window

LTI Viewer Preferences Editor
(p. 7-3)

How to set units, fonts, response plot
characteristics, and so on in the LTI
Viewer

Graphical Tuning Window
Preferences Editor (p. 7-8)

How to set units, fonts, response
plot characteristics, and so on in the
Graphical Tuning Window

7 Setting Tool Preferences

Introduction
Both the LTI Viewer and the Graphical Tuning Window have Tool Preferences
Editors. These editors comprise the middle layer of “Property and Preferences
Hierarchy”.

Both editors allow you to set default characteristics for specific instances of
LTI Viewers and Graphical Tuning windows. If you open a new instance of
either, each defaults to the characteristics specified in the Toolbox Preferences
editor.

7-2

LTI Viewer Preferences Editor

LTI Viewer Preferences Editor

In this section...

“Opening the LTI Viewer Preference Editor” on page 7-3

“Units Pane” on page 7-4

“Style Pane” on page 7-4

“Options Pane” on page 7-5

“Parameters Pane” on page 7-6

Opening the LTI Viewer Preference Editor
Select LTI Viewer Preferences under the Edit menu of the LTI Viewer to
open the LTI Viewer Preferences editor, which is a tool for customizing
various LTI Viewer properties, including units, fonts, and various other viewer
characteristics. This figure shows the editor open to its first pane.

7-3

7 Setting Tool Preferences

Units Pane

You can select the following on the Units pane:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency axis, you can select logarithmic or linear scales.

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the LTI Viewer. This figure shows the Style
pane.

7-4

LTI Viewer Preferences Editor

You have the following choices:

• Grid — Activate grids for all plots in the LTI Viewer

• Fonts — Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

• If you do not want to specify the RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” on page 7-10
for more information.

Options Pane
The Options pane has selections for time responses and frequency responses.

7-5

7 Setting Tool Preferences

The following choices are available:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.

- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

Parameters Pane
Use the Parameters pane, shown below, to specify input vectors for time and
frequency simulation.

7-6

LTI Viewer Preferences Editor

The defaults are to generate time and frequency vectors for your plots
automatically. You can, however, override the defaults as follows:

• Time Vector:

- Define stop time — Specify the final time value for your simulation

- Define vector — Specify the time vector manually using equal-sized
time steps

• Frequency Vector:

- Define range — Specify the bandwidth of your response. Whether it’s in
rad/sec or Hz depends on the selection you made in the Units pane.

- Define vector — Specify the vector for your frequency values. Any real,
positive, strictly monotonically increasing vector is valid.

7-7

7 Setting Tool Preferences

Graphical Tuning Window Preferences Editor

In this section...

“Opening the Graphical Tuning Window Preferences Editor” on page 7-8

“Units Pane” on page 7-9

“Style Pane” on page 7-9

“Options Pane” on page 7-12

“Line Colors Pane” on page 7-13

Opening the Graphical Tuning Window Preferences
Editor
To open the SISO Tool Preferences editor, select SISO Tool Preferences
from the Edit menu of the Graphical Tuning window. This window opens.

7-8

Graphical Tuning Window Preferences Editor

Units Pane

The Units pane has settings for the following units:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the Graphical Tuning Window. This figure
shows the Style pane.

7-9

7 Setting Tool Preferences

Grids Panel
Select the box to activate grids for all plots in the GRAPHICAL Tuning
Window

Fonts Panel
Set the font size, weight (bold), and angle (italic) by using the menus and
check boxes.

Colors Panel
Specify the color vector to use for the axes foreground, which includes the X-Y
axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

Select colors. Click the Select button to open the Select Color window for
the axes foreground.

7-10

Graphical Tuning Window Preferences Editor

You can use this window to choose axes foreground colors without having
to set RGB (red-green-blue) values numerically. To make your selections,
click on the colored rectangles and press OK. If you want a broader range of
colors, click the Define Custom Colors button. This extends the Select
Color window, as shown in this figure.

You can pick colors from the color spectrum located in the upper right corner
of the window. To select a custom color, follow these steps:

1 Place your cursor at a point in the color spectrum that has a color you
want to define.

7-11

7 Setting Tool Preferences

2 Left-click. Notice that the hue, saturation, luminescence (lum.), red, green,
and blue fields specify the numerical values for the selected color.

3 Press Add to Custom Colors. This adds the selected color to the row
of boxes labeled Custom Color. You can now use this color just like the
basic colors.

Options Pane
The Options pane, shown below, has selections for compensator format and
Bode diagrams.

You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or
zero/pole/gain format. The time constant format is a factorization of the
compenator transfer function of the form

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the
pole time constants.

The natural frequency format is

7-12

Graphical Tuning Window Preferences Editor

where ωz1,ωz2, ... and ωp1, ωp2, ..., are the natural frequencies of the zeros
and poles, respectively.

The zero/pole/gain format is

where z1, z2, ... and p1, p2, ..., are the zero and pole locations, respectively.

• Bode Options — By default, the GRAPHICAL Tuning Window shows the
plant and sensor poles and zeros as blue x’s and o’s, respectively. Clear this
check box to eliminate the plant’s poles and zeros from the Bode plot. Note
that the compensator poles and zeros (in red) will still appear.

Line Colors Pane
The Line Colors pane, shown below, has selections for specify the colors of the
lines in the response plots of the Graphical Tuning Window.

To change the colors of plot lines associated with parts of your model, specify
a three-element vector to represent red, green, and blue (RGB) values. Vector
element values can range from 0 to 1.

7-13

7 Setting Tool Preferences

If you do not want to specify the RGB values numerically, click the Select
button to open the Select Color window. See “Select colors” on page 7-10 for
more information.

7-14

8

Customizing Response Plot
Properties

Introduction (p. 8-2) An overview of setting response plot
properties

Response Plots Property Editor
(p. 8-4)

An editor for setting axes labels and
limits, fonts, grids, and so on

Property Editing for Subplots
(p. 8-11)

How to edit individual plots in a
multi-plot figure window

Customizing Plots Inside the SISO
Design Tool (p. 8-12)

Special considerations for editing
root locus, Bode plots, and Nichols
plots in the SISO Design Tool

8 Customizing Response Plot Properties

Introduction
The lowest level of the “Property and Preferences Hierarchy” is setting
response plot properties. This means that any property you set for a given
plot will only affect that plot.

Once you have created a response plot, there are two ways to open the
Property Editor:

• Double-click in the plot region

• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using these
commands.

load ltiexamples
step(sys_dc)

This creates a step plot. Select Properties from the right-click menu. Note
that when you open the Property Editor, a set of black squares appear
around the step response, as this figure shows:

8-2

Introduction

SISO System Step Response

8-3

8 Customizing Response Plot Properties

Response Plots Property Editor

In this section...

“Overview of Response Plots Property Editor” on page 8-4

“Labels Pane” on page 8-5

“Limits Pane” on page 8-6

“Units Pane” on page 8-7

“Style Pane” on page 8-8

“Options Pane” on page 8-9

Overview of Response Plots Property Editor
This figure shows the Property Editor dialog box for a step response.

The Property Editor for Step Response

In general, you can change the following properties of response plots. Note
that only the Labels and Limits panes are available when using the
Property Editor with Simulink Response Optimization.

• Titles and X- and Y-labels in the Labels pane.

8-4

Response Plots Property Editor

• Numerical ranges of the X and Y axes in the Limits pane.

• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, as is the case with step responses, the
Property Editor will display that no units are available for the selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold and
italics, and change the axes foreground color

• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc.
Plot options change with each plot response type. The Property Editor
displays only the options that make sense for the selected response plot.
For example, phase and gain margins are not available for step responses.

As you make changes in the Property Editor, they display immediately in the
response plot. Conversely, if you make changes in a plot using right-click
menus, the Property Editor for that plot automatically updates. The Property
Editor and its associated plot are dynamically linked.

Labels Pane
To specify new text for plot titles and axis labels, type the new string in
the field next to the label you want to change. Note that the label changes
immediately as you type, so you can see how the new text looks as you are
typing.

8-5

8 Customizing Response Plot Properties

Limits Pane
Default values for the axes limits make sure that the maximum and minimum
x and y values are displayed. If you want to override the default settings,
change the values in the Limits fields. The Auto-Scale box automatically
clears if you click a different field. The new limits appear immediately in
the response plot.

To reestablish the default values, select the Auto-Scale box again.

8-6

Response Plots Property Editor

Units Pane
You can use the Units pane to change units in your response plot. The
contents of this pane depend on the response plot associated with the editor.

Note that for step and impulse responses, there are no alternate units
available (only time and amplitude are possible in the toolbox). This table
lists the options available for the other response objects. Use the menus to
toggle between units.

Optional Unit Conversions for Response Plots

Response Plot Unit Conversions

Bode and
Bode Magnitude

Frequency in rad/s or Hertz (Hz)
using logarithmic or linear scale
Magnitude in decibels (dB) or the absolute value
Phase in degrees or radians

Impulse None

Nichols Chart Frequency in rad/s or Hertz
Phase in degrees or radians

Nyquist Diagram Frequency in rad/s or Hertz

Pole/Zero Map Frequency in rad/s or Hertz

8-7

8 Customizing Response Plot Properties

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

Singular Values Frequency in rad/s or Hertz
using logarithmic or linear scale
Magnitude in decibels or the absolute
value using logarithmic or linear scale

Step None

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for response plots.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts — Set the font size, weight (bold), and angle (italic) for fonts used in
response plot titles, X/Y-labels, tick labels, and I/O-names.

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element

8-8

Response Plots Property Editor

vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Color dialog box. See “Select colors” on page
7-10 for more information.

Options Pane
The Options pane allows you to customize response characteristics for plots.
Each response plot has its own set of characteristics and optional settings; the
table below lists them. Use the check boxes to activate the feature and the
fields to specify rise or settling time percentages.

8-9

8 Customizing Response Plot Properties

Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram and Bode
Magnitude

Select lower magnitude limit
Adjust phase offsets to keep phase
close to a particular value, within a
range of ±180º, at a given frequency.
Unwrap phase (default is unwrapped)

Impulse Show settling time within xx% (specify the
percentage)

Nichols Chart Select lower magnitude limit
Adjust phase offsets to keep phase
close to a particular value, within a
range of ±180º, at a given frequency.
Unwrap phase (default is unwrapped)

Nyquist Diagram None

Pole/Zero Map None

Sigma None

Step Show settling time within
xx% (specify the percentage)
Show rise time from xx to yy%
(specify the percentages)

8-10

Property Editing for Subplots

Property Editing for Subplots
If you create more than one plot in a single figure window, you can edit each
plot individually. For example, the following code creates a figure with two
plots, a step and an impulse response with two randomly selected systems:

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot
to activate the Property Editor. You will see a set of small black squares
appear around the step response, indicating that it is the active plot for the
editor. To switch to the lower (impulse response) plot, just click once in the
impulse response plot region. The set of black squares switches to the impulse
response, and the Property Editor updates as well.

8-11

8 Customizing Response Plot Properties

Customizing Plots Inside the SISO Design Tool

In this section...

“Overview of Customizing SISO Design Tool Plots” on page 8-12

“Root Locus Property Editor” on page 8-12

“Open-Loop Bode Property Editor” on page 8-16

“Open-Loop Nichols Property Editor” on page 8-18

“Prefilter Bode Property Editor” on page 8-20

Overview of Customizing SISO Design Tool Plots
Customizing plots inside the SISO Design Tool is similar to how you customize
any response plot. The Control System Toolbox provides the following
property editors specific to the SISO Design Tool:

• Root Locus Property Editor

• Open-Loop Bode Property Editor

• Open-Loop Nichols Property Editor

• Prefilter Bode Property Editor

You can use each of these property editors to create the customized plots
within the SISO Design tool.

Root Locus Property Editor
There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu

• Select Root Locus and then Properties from Edit in the menu bar

This figure shows the Property Editor: Root Locus window.

8-12

Customizing Plots Inside the SISO Design Tool

• “Labels Pane” on page 8-13

• “Limits Pane” on page 8-14

• “Options Pane” on page 8-15

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The root locus plot
automatically updates.

8-13

8 Customizing Response Plot Properties

Limits Pane
The SISO Design Tool specifies default values for the real and imaginary
axes ranges to make sure that all the poles and zeros in your model appear
in the root locus plot. Use the Limits pane, shown below, to override the
default settings.

To change the limits, specify the new limits in the real and imaginary axes
Limits fields. The Auto-Scale check box automatically clears once you click
in a different field. Your root locus diagram updates immediately. If you want
to reapply the default limits, select the Auto-Scale check boxes again.

The Limit Stack pane provides support for storing and retrieving custom limit
specifications. There are four buttons available:

— Add the current limits to the stack

— Retrieve the previous stack entry

— Retrieve the next stack entry

— Remove the current limits from the stack

8-14

Customizing Plots Inside the SISO Design Tool

Using these buttons, you can store and retrieve any number of saved custom
axes limits.

Options Pane
The Options pane contains settings for adding a grid and changing the plot’s
aspect ratio.

Select Show grid to display a grid on the root locus. If you have damping
ratio constraints on your root locus, selecting Display damping ratios as
% peak overshoot displays the damping ratio values along the grid lines.
This figure shows both options activated for an imported model, Gservo. If
you want to verify these settings, type

load ltiexamples

at the MATLAB prompt and import Gservo from the workspace into your
SISO Design Tool.

8-15

8 Customizing Response Plot Properties

Displaying Damping Ratio Values

The numbers displayed on the root locus gridlines are the damping ratios as a
percentage of the overshoot values.

If you select the Equal check box in the Aspect Ratio pane, the x and y-axes
are set to equal limit values.

Open-Loop Bode Property Editor
As is the case with the root locus Property Editor, there are three ways to open
the Bode diagram property editor:

• Double-click in the Bode magnitude or phase plot away from the curve.

• Select Properties from the right-click menu.

• Select Open-Loop Bode and then Properties from Edit in the menu bar.

This figure shows the Property Editor: Open-Loop Bode editor.

8-16

Customizing Plots Inside the SISO Design Tool

• “Labels Pane” on page 8-17

• “Limits Pane” on page 8-18

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Bode diagram
automatically updates.

8-17

8 Customizing Response Plot Properties

Limits Pane
The Control System Toolbox sets default limits for the frequency, magnitude,
and phase scales for your plots. Use the Limits pane to override the default
values.

To change the limits, specify the new values in the Limits fields for frequency,
magnitude, and phase. The Auto-Scale check box automatically deactivates
once you click in a different field. The Bode diagram updates immediately.

To restore the default settings, select the Auto-Scale boxes again.

Open-Loop Nichols Property Editor
As is the case with the root locus Property Editor, there are three ways to
open the Nichols plot property editor:

• Double-click in the Nichols plot away from the curve.

• Select Properties from the right-click menu.

• Select Open-Loop Nichols and then Properties from Edit in the menu
bar.

This figure shows the Property Editor: Open-Loop Nichols editor.

8-18

Customizing Plots Inside the SISO Design Tool

• “Labels Pane” on page 8-19

• “Limits Pane” on page 8-19

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Nichols plot
automatically updates.

Limits Pane
The Control System Toolbox sets default limits for the frequency, magnitude,
and phase scales for your plots. Use the Limits pane to override the default
values.

8-19

8 Customizing Response Plot Properties

To change the limits, specify the new values in the Limits fields for open-loop
phase and/or gain. The Auto-Scale check box automatically deactivates once
you click in a different field. The Nichols plot updates immediately.

To restore the default settings, select the Auto-Scale boxes again.

Prefilter Bode Property Editor
The Prefilter Bode Property editor is identical to the Open-Loop Bode
diagram property editor. There are three ways to open the prefilter editor:

• Double-click in the prefilter Bode magnitude or phase plot away from the
curve.

• Select Properties from the right-click menu.

• Select Prefilter Bode and then Properties from Edit in the menu bar.

See “Open-Loop Bode Property Editor” on page 8-16 for a description of the
features of this editor.

8-20

9

Customizing Plots from the
Command Line

Ways to Customize Plots (p. 9-2) An overview of setting response plot
properties

Using Plot and Plot Options Handles
(p. 9-3)

A simple example

Obtaining Plot Handles (p. 9-6) How to create and manipulate plot
handles for response plots

Obtaining Plot Options Handles
(p. 9-7)

How to create and manipulate plot
option handles

Examples of Customizing Plots from
the Command Line (p. 9-11)

A selection of code for customizing
response plots

Properties and Values Reference
(p. 9-15)

A series of tables that list
property/value pairs for response
plots

Property Organization Reference
(p. 9-24)

A figure that shows which properties
are common to all response plots,
and which are associated with
individual response plots

9 Customizing Plots from the Command Line

Ways to Customize Plots
There are three ways to customize the appearance of plots.

• Globally set the Control System Toolbox preferences using the Toolbox
Preferences Editor. See “Toolbox Preferences Editor” on page 6-2.

• Locally set options using the Response Plot Property Editor. See “Response
Plots Property Editor” on page 8-4.

• Programmatically set options, which allows you to customize plot properties
in scripts and M-functions

The Control System Toolbox provides an application program interface
(API) for customizing plotting options for response plots. This
command-line API is particularly useful when you want to customize
large numbers of plots. For example, if you have a batch job that produces
hundreds of plots, you can change x-axis units automatically for all the
plot using a few lines of code.

9-2

Using Plot and Plot Options Handles

Using Plot and Plot Options Handles
To modify a plot, you need the plot handle, which is an identifier for the plot.
You can access the plot handle using the API’s plotting syntax. For example,

h=stepplot(sys)

returns the plot handle h for the step plot.

Once you have the plot handle, you need the plot options handle, which is
an identifier for all settable plot options. To get a plot options handle for a
given plot, type

p=getoptions(h);

p is the plot options handle for plot handle h.

Using setoptions and getoptions, together with both handles, you can
access and modify many plot options.

s = tf('s');
sys= 1/(s+1);
h= bodeplot(sys);

9-3

9 Customizing Plots from the Command Line

Using setoptions, change the phase units from degrees to Hz.

p = getoptions(h);
p.FreqUnits = 'Hz';
setoptions(h,p)

The units for the x-axis have changed from rad/s to Hz.

9-4

Using Plot and Plot Options Handles

You can also customize the plot using property/value pairs with the plot
handle h directly. This shortens the procedure to one line of code.

setoptions(h,'FreqUnits','Hz');

This sets the x-axis units to Hz.

Note This chapter assumes some very basic familiarity with Handle
Graphics® and object-oriented concepts, namely, classes, objects, and Handle
Graphics handles. See Classes and Objects and Handle Graphics Objects in
the MATLAB online documentation for more information.

9-5

9 Customizing Plots from the Command Line

Obtaining Plot Handles
In order to programmatically interact with response plot, you need the plot
handle. This handle is an identifier to the response plot object. Because the
Control System Toolbox plotting commands, bode, rlocus, etc., all use the
plot handle internally, this API provides a set of commands that explicitly
return the handle to your response plot. These functions all end with "plot,"
which makes them easy to identify. This table lists the functions.

Functions That Return the Plot Handle

Function Plot

bodeplot Bode magnitude and phase

hsvplot Hankel singular values

impulseplot Impulse response

initialplot Initial condition

iopzplot Pole/zero maps for input/output pairs

lsimplot Time response to arbitrary inputs

nicholsplot Nichols chart

nyquistplot Nyquist

pzplot Pole/zero

rlocusplot Root locus

sigmaplot Singular values of the frequency response

stepplot Step response

To get a plot handle for any response plot, use the functions from the table.
For example,

h = bodeplot(sys)

returns plot handle h (it also renders the Bode plot). Once you have this
handle, you can modify the plot properties using the setoptions and
getoptions methods of the plot object, in this case, a Bode plot handle.

9-6

Obtaining Plot Options Handles

Obtaining Plot Options Handles

In this section...

“Overview of Plot Options Handles” on page 9-7

“Retrieving a Handle” on page 9-7

“Creating a Handle” on page 9-7

“Which Properties Can You Modify?” on page 9-8

Overview of Plot Options Handles
Once you have the plot handle, you need the plot options handle, which is an
identifier for all the settable plot properties for a given response plot. There
are two ways to create a plot options handle:

• Retrieving a Handle — Use getoptions to get the handle.

• Creating a Handle — Use <responseplot>options to instantiate a handle.
See Functions for Creating Plot Options Handles on page 9-8 for a complete
list.

Retrieving a Handle
The getoptions function retrieves a plot options handle from a plot handle.

p=getoptions(h) % Returns plot options handle p for plot handle h.

If you specify a property name as an input argument, getoptions returns the
property value associated with the property name.

property_value=getoptions(h,PropertyName) % Returns a property
% value.

Creating a Handle
You can create a default plot options handle by using functions in the form of

<responseplot>options

For example,

9-7

9 Customizing Plots from the Command Line

p=bodeoptions;

instantiates a handle for Bode plots. See “Properties and Values Reference”
on page 9-15 for a list of default values.

If you want to set the default values to those of the Control System Toolbox,
pass cstprefs to the function. For example,

p = bodeoptions('cstprefs');

set the Bode plot property/value pairs to Control System Toolbox defaults.

This table lists the functions that create a plot options handle.

Functions for Creating Plot Options Handles

Function Type of Plot Options Handle Created

bodeoptions Bode phase and magnitude

hsvoptions Hankel singular values

nicholsoptions Nichols plot

nyquistoptions Nyquist plot

pzoptions Pole/zero plot

sigmaoptions Sigma (singular values) plot

timeoptions Time response (impulse, step, etc.)

Which Properties Can You Modify?
Use

help <responseplot>options

to see a list of available property value pairs that you can modify. For example,

help bodeoptions

BODEOPTIONS Create a BodePlotOptions object

9-8

Obtaining Plot Options Handles

P = BODEOPTIONS returns the default BodePlotOptions object.

P = BODEOPTIONS('cstprefs') initializes the BodePlotOptions

object

with the Control System Toolbox preferences.

Available options include:

Title, XLabel, YLabel Label text and style

TickLabel Tick label style

Grid [off|on] Show or hide the grid

XlimMode, YlimMode Limit modes

Xlim, Ylim Axes limits

IOGrouping Grouping of input-output

pairs

[none|inputs|output|all]

InputLabels, OutputLabels Input and output label

styles

InputVisible, OutputVisible Visibility of input and

output channels

FreqUnits [Hz|rad/s] Frequency Units

FreqScale [linear|log] Frequency Scale

MagUnits [dB|abs] Magnitude Units

MagScale [linear|log] Magnitude Scale

MagVisible [on|off] Magnitude plot visibility

MagLowerLimMode [auto|manual] Enables a lower magnitude

limit

MagLowerLim Specifies the lower

magnitude limit

PhaseUnits [deg|rad] Phase units

PhaseVisible [on|off] Phase plot visibility

PhaseWrapping [on|off] Enables phase wrapping

PhaseMatching [on|off] Enables phase matching

PhaseMatchingFreq Frequency for matching phase

PhaseMatchingValue The value to make the phase

responses close to

You can modify any of these parameters using setoptions. The next section
provides examples of modifying various response plots.

9-9

9 Customizing Plots from the Command Line

See “Properties and Values Reference” on page 9-15 for a complete list of
property/value pairs for response plots.

9-10

Examples of Customizing Plots from the Command Line

Examples of Customizing Plots from the Command Line

In this section...

“Manipulating Plot Options Handles” on page 9-11

“Changing Plot Units” on page 9-11

“Create Plots Using Existing Plot Options Handle” on page 9-12

“Creating a Default Plot Options Handle” on page 9-13

“Using Dot Notation Like a Structure” on page 9-13

“Setting Property Pairs in setoptions” on page 9-14

Manipulating Plot Options Handles
There are two fundamental ways to manipulate plot option handles:

• Dot notation — Treat the handle like a MATLAB structure.

• Property value pairs — Specify property/value pairs explicitly as input
arguments to setoptions.

For some examples, both dot notation and property/value pairs approaches
are shown. For all examples, use

sys=tf(1,[1 1])

for the system.

Changing Plot Units
Change the frequency units of a Bode plot from rad/s to Hz.

h = bodeplot(sys);
p = getoptions(h);
p.FreqUnits = 'Hz'
setoptions(h,p)

or, for the last three lines, substitute

setoptions(h,'FreqUnits','Hz')

9-11

9 Customizing Plots from the Command Line

Create Plots Using Existing Plot Options Handle
You can use an existing plot options handle to customize a second plot:

h1 = bodeplot(sys);
p1 = getoptions(h1);
h2 = bodeplot(sys,p1);

or

h1 = bodeplot(sys);
h2 = bodeplot(sys2);
setoptions(h2,getoptions(h1))

9-12

Examples of Customizing Plots from the Command Line

Creating a Default Plot Options Handle
Instantiate a plot options handle with this code.

p = bodeoptions;

Change the frequency units and apply the changes to sys.

p.FreqUnits ='Hz';
h = bodeplot(sys,p);

Using Dot Notation Like a Structure
You can always use dot notation to assign values to properties.

h1 = bodeplot(sys)
p1 = getoptions(h1)
p1.FreqUnits = Hz'
p1.Title.String = 'My Title';
setoptions(h1,p1)

9-13

9 Customizing Plots from the Command Line

Setting Property Pairs in setoptions
Instead of using dot notation, specify frequency units as property/value pairs
in setoptions.

h1 = bodeplot(sys)
setoptions(h1,'FreqUnits','Hz')

Verify that the units have changed from rad/s to Hz.

getoptions(h1,'FreqUnits') % Returns frequency units for h1.

ans =

Hz

9-14

Properties and Values Reference

Properties and Values Reference

In this section...

“Property/Value Pairs Common to All Response Plots” on page 9-15

“Bode Plots” on page 9-20

“Hankel Singular Values” on page 9-21

“Nichols Plots” on page 9-21

“Nyquist Charts” on page 9-22

“Pole/Zero Maps” on page 9-22

“Sigma Plots” on page 9-22

“Time Response Plots” on page 9-23

Property/Value Pairs Common to All Response Plots
The following tables discuss property/value pairs common to all response plots.

Title

Property
Default
Value Description

Title.String none String

Title.FontSize 8 Double

Title.FontWeight normal [light | normal | demi |
bode]

Title.FontAngle normal [normal | italic | oblique]

Title.Color [0 0 0] 1-by-3 RGB vector

9-15

9 Customizing Plots from the Command Line

X Label

Property
Default
Value Description

XLabel.String none String

Xlabel.FontSize 8 Double

Xlabel.FontWeight normal [light | normal | demi |
bode]

XLabel.FontAngle normal [normal | italic | oblique]

Xlabel.Color [0 0 0] 1-by-3 RGB vector

Y Label

Property Default Value Description

YLabel.String none String

Ylabel.FontSize 8 Double

Ylabel.FontWeight normal [light | normal | demi |
bode]

YLabel.FontAngle normal [normal | italic |
oblique]

Ylabel.Color [0 0 0] 1-by-3 RGB vector

Tick Label

Property Default Value Description

TickLabel.FontSize 8 Double

TickLabel.FontWeight normal [light | normal | demo |
bode]

9-16

Properties and Values Reference

Tick Label (Continued)

Property Default Value Description

TickLabel.FontAngle normal [normal | italic |
oblique]

Ticklabel.Color [0 0 0] 1-by-3 RGB vector

Grid and Axis Limits

Property
Default
Value Description

grid off [on | off]

Xlim {[]} A cell array of 1-by-2 doubles that specifies the
x-axis limits when XLimMode is set to manual.
When XLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of columns (i.e., number of system
inputs) for the plot. The 1-by-2 doubles must be a
strictly increasing pair [xmin, xmax].

XLimMode {auto} A cell array of strings [auto | manual] that
specifies the x-axis limits mode. When XLimMode
is set to manual the limits are set to the values
specified in XLim. When XLimMode is scalar, scalar
expansion is applied; otherwise the length of the
cell array must equal the number of columns (i.e.,
number of system inputs) for the plot.

9-17

9 Customizing Plots from the Command Line

Grid and Axis Limits (Continued)

Property
Default
Value Description

YLim {[]} A cell array of 1-by-2 doubles specifies the y-axis
limits when YLimMode is set to manual. When
YLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of rows (i.e., number of system
outputs) for the plot. The 1-by-2 doubles must be
a strictly increasing pair [ymin, ymax].

YLimMode {auto} A cell array of strings [auto | manual] that
specifies the y-axis limits mode. When YLimMode
is set to manual the limits are set to the values
specified in YLim. When YLimMode is scalar, scalar
expansion is applied; otherwise the length of the
cell array must equal the number of columns (i.e.,
number of system inputs) for the plot.

I/O Grouping

Property Default Value Description

IOGrouping none [none | inputs | outputs | all]
Specifies input/output groupings for
responses.

9-18

Properties and Values Reference

Input Labels

Property
Default
Value Description

InputLabels.FontSize 8 Double

InputLabels.FontWeight normal [light | normal | demi
| bode]

InputLabels.FontAngle normal [normal | italic |
oblique]

InputLabels.Color [0 0 0] 1-by-3 RGB vector

Output Labels

Property
Default
Value Description

OutputLabel.FontSize 8 Double

OutputLabels.FontWeight normal [light | normal | demi
| bode]

OutputLabels.FontAngle normal [normal | italic |
oblique]

OutputLabels.Color [0 0 0] 1-by-3 RGB vector

9-19

9 Customizing Plots from the Command Line

Input/Output Visible

Property Default Value Description

InputVisible {on} [on | off]
A cell array that specifies the
visibility of each input channel.
If the value is a scalar, scalar
expansion is applied.

OutputVisible {on} [on | off]
A cell array that specifies the
visibility of each output channel.
If the value is a scalar, scalar
expansion is applied.

Bode Plots

Property
Default
Value Description

FreqUnits rad/sec [rad/sec | Hz

FreqScale log [linear | log]

MagUnits dB [db | abs]

MagScale linear [linear | log]

PhaseUnits deg [rad | deg]

PhaseWrapping off [on | off]

MagVisible on [on | off]

PhaseVisible on [on | off]

MagLowerLimMode auto [auto | manual]
Enables a manual lower magnitude
limit specification by MagLowerLim.

9-20

Properties and Values Reference

Property
Default
Value Description

MagLowerLim 0 Double
Specifies the lower magnitude limit
when MagLowerLimMode is set to
manual.

PhaseMatching off [on | off]
Enables adjusting phase effects for
phase response.

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double

Hankel Singular Values

Property Default Value Description

Yscale linear [linear | log]

AbsTol 0 Double
See hsvd and stabsep for details.

RelTol 1*e-08 Double
See hsvd and stabsep for details.

Offset 1*e-08 Double
See hsvd and stabsep for details.

Nichols Plots

Property Default Value Description

FreqUnits rad/sec [rad/sec | Hz]

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

MagLowerLimMode auto [auto | manual]

MagLowerLim 0 double

9-21

9 Customizing Plots from the Command Line

Property Default Value Description

PhaseMatching off [on | off]

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double

Nyquist Charts

Property Default Value Description

FreqUnits rad/sec [rad/sec | Hz]

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

ShowFullContour on [on | off]

Pole/Zero Maps

Property Default Value Description

FreqUnits rad/sec [rad/sec | Hz]

Sigma Plots

Property Default Value Description

FreqUnits rad/sec [rad/sec | Hz]

FreqScale log [linear | log]

MagUnits dB [dB | abs]

MagScale linear [linear | log]

9-22

Properties and Values Reference

Time Response Plots

Property Default Value Description

Normalize off [on | off]
Normalize the y-scale of all
responses in the plot.

SettleTimeThreshold 0.02 Double
Specifies the settling time
threshold. 0.02 = 2%.

RiseTimeLimits [0.1, 0.9] 1-by-2 double
Specifies the limits used to define
the rise time. [0.1, 0.9] is 10%
to 90%.

9-23

9 Customizing Plots from the Command Line

Property Organization Reference

9-24

10

Design Case Studies

Yaw Damper for a 747 Jet Transport
(p. 10-2)

Illustrating the classical design
process (jetdemo.m)

Hard-Disk Read/Write Head
Controller (p. 10-19)

Illustrating classical digital
controller design (milldemo.m)

LQG Regulation: Rolling Mill
Example (p. 10-30)

Using linear quadratic Gaussian
techniques to regulate the beam
thickness in a steel rolling mill
(diskdemo.m)

Kalman Filtering (p. 10-49) Kalman filtering that illustrates
both steady-state and time-varying
Kalman filter design and simulation
(kalmdemo.m)

10 Design Case Studies

Yaw Damper for a 747 Jet Transport

In this section...

“Overview of this Case Study” on page 10-2

“Creating the Jet Model” on page 10-2

“Computing Open-Loop Eigenvalues” on page 10-4

“Open-Loop Analysis” on page 10-5

“Root Locus Design” on page 10-8

“Washout Filter Design” on page 10-13

Overview of this Case Study
This case study demonstrates the tools for classical control design by stepping
through the design of a yaw damper for a 747 jet transport aircraft.

Creating the Jet Model
The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558 -0.9968 0.0802 0.0415
0.5980 -0.1150 -0.0318 0

-3.0500 0.3880 -0.4650 0
0 0.0805 1.0000 0];

B = [0.0729 0.0000
-4.7500 0.00775
.15300 0.1430

0 0];

C = [0 1 0 0
0 0 0 1];

D = [0 0
0 0];

The following commands specify this state-space model as an LTI object and
attach names to the states, inputs, and outputs.

10-2

Yaw Damper for a 747 Jet Transport

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...
'inputname',inputs,...
'outputname',outputs);

You can display the LTI model sys by typing sys. MATLAB responds with

a =

beta yaw roll phi

beta -0.0558 -0.9968 0.0802 0.0415

yaw 0.598 -0.115 -0.0318 0

roll -3.05 0.388 -0.465 0

phi 0 0.0805 1 0

b =

rudder aileron

beta 0.0729 0

yaw -4.75 0.00775

roll 0.153 0.143

phi 0 0

c =

beta yaw roll phi

yaw 0 1 0 0

bank angle 0 0 0 1

d =

rudder aileron

yaw 0 0

bank angle 0 0

Continuous-time model.

10-3

10 Design Case Studies

The model has two inputs and two outputs. The units are radians for beta
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and
roll (roll rate). The rudder and aileron deflections are in radians as well.

Computing Open-Loop Eigenvalues
Compute the open-loop eigenvalues and plot them in the -plane.

damp(sys)

Eigenvalue Damping Freq. (rad/s)

-7.28e-003 1.00e+000 7.28e-003
-5.63e-001 1.00e+000 5.63e-001
-3.29e-002 + 9.47e-001i 3.48e-002 9.47e-001
-3.29e-002 - 9.47e-001i 3.48e-002 9.47e-001

pzmap(sys)

10-4

Yaw Damper for a 747 Jet Transport

This model has one pair of lightly damped poles. They correspond to what is
called the "Dutch roll mode."

Suppose you want to design a compensator that increases the damping of
these poles, so that the resulting complex poles have a damping ratio
with natural frequency rad/sec. You can do this using the Control
System toolbox analysis tools.

Open-Loop Analysis
First, perform some open-loop analysis to determine possible control
strategies. Start with the time response (you could use step or impulse here).

impulse(sys)

The impulse response confirms that the system is lightly damped. But the
time frame is much too long because the passengers and the pilot are more
concerned about the behavior during the first few seconds rather than the

10-5

10 Design Case Studies

first few minutes. Next look at the response over a smaller time frame of
20 seconds.

impulse(sys,20)

Look at the plot from aileron (input 2) to bank angle (output 2). To show only
this plot, right-click and choose I/O Selector, then click on the (2,2) entry.
The I/O Selector should look like this.

The new figure is shown below.

10-6

Yaw Damper for a 747 Jet Transport

The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is
turning in response to an aileron impulse. This behavior will prove important
later in this case study.

Typically, yaw dampers are designed using the yaw rate as sensed output and
the rudder as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.
bode(sys11)

10-7

10 Design Case Studies

From this Bode diagram, you can see that the rudder has significant effect
around the lightly damped Dutch roll mode (that is, near rad/sec).

Root Locus Design
A reasonable design objective is to provide a damping ration with a
natural frequency rad/sec. Since the simplest compensator is a static
gain, first try to determine appropriate gain values using the root locus
technique.

% Plot the root locus for the rudder to yaw channel
rlocus(sys11)

10-8

Yaw Damper for a 747 Jet Transport

This is the root locus for negative feedback and shows that the system goes
unstable almost immediately. If, instead, you use positive feedback, you may
be able to keep the system stable.

rlocus(-sys11)
sgrid

10-9

10 Design Case Studies

This looks better. By using simple feedback, you can achieve a damping ratio
of . Click on the blue curve and move the data marker to track the
gain and damping values. To achieve a 0.45 damping ratio, the gain should be
about 2.85. This figure shows the data marker with similar values.

10-10

Yaw Damper for a 747 Jet Transport

Next, close the SISO feedback loop.

K = 2.85;
cl11 = feedback(sys11,-K); % Note: feedback assumes negative

% feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and
compare it to the open-loop impulse response.

impulse(sys11,'b--',cl11,'r',20)

10-11

10 Design Case Studies

The closed-loop response settles quickly and does not oscillate much,
particularly when compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from
the aileron looks. The feedback loop involves input 1 and output 1 of the
plant (use feedback with index vectors selecting this input/output pair). At
the MATLAB prompt, type

cloop = feedback(sys,-K,1,1);
damp(cloop) % closed-loop poles

Eigenvalue Damping Freq. (rad/s)

-3.42e-001 1.00e+000 3.42e-001
-2.97e-001 + 6.06e-001i 4.40e-001 6.75e-001
-2.97e-001 - 6.06e-001i 4.40e-001 6.75e-001
-1.05e+000 1.00e+000 1.05e+000

Plot the MIMO impulse response.

10-12

Yaw Damper for a 747 Jet Transport

impulse(sys,'b--',cloop,'r',20)

The yaw rate response is now well damped, but look at the plot from aileron
(input 2) to bank angle (output 2). When you move the aileron, the system
no longer continues to bank like a normal aircraft. You have over-stabilized
the spiral mode. The spiral mode is typically a very slow mode and allows the
aircraft to bank and turn without constant aileron input. Pilots are used
to this behavior and will not like your design if it does not allow them to
fly normally. This design has moved the spiral mode so that it has a faster
frequency.

Washout Filter Design
What you need to do is make sure the spiral mode does not move further into
the left-half plane when you close the loop. One way flight control designers
have addressed this problem is to use a washout filter where

10-13

10 Design Case Studies

The washout filter places a zero at the origin, which constrains the spiral
mode pole to remain near the origin. We choose for a time constant of
five seconds and use the root locus technique to select the filter gain H. First
specify the fixed part of the washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between
input 1 and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)
sgrid

Create and drag a data marker around the upper curve to locate the maximum
damping, which is about .

10-14

Yaw Damper for a 747 Jet Transport

This figure shows a data marker at the maximum damping ratio; the gain
is approximately 2.07.

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;
cl11 = feedback(oloop,-K);
impulse(cl11,20)

10-15

10 Design Case Studies

The response settles nicely but has less damping than your previous design.
Finally, you can verify that the washout filter has fixed the spiral mode
problem. First form the complete washout filter (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and
simulate the impulse response.

cloop = feedback(sys,WOF,1,1);

% Final closed-loop impulse response
impulse(sys,'b--',cloop,'r',20)

10-16

Yaw Damper for a 747 Jet Transport

The bank angle response (output 2) due to an aileron impulse (input 2) now
has the desired nearly constant behavior over this short time frame. To
inspect the response more closely, use the I/O Selector in the right-click menu
to select the (2,2) I/O pair.

10-17

10 Design Case Studies

Although you did not quite meet the damping specification, your design has
increased the damping of the system substantially and now allows the pilot
to fly the aircraft normally.

10-18

Hard-Disk Read/Write Head Controller

Hard-Disk Read/Write Head Controller

In this section...

“Overview of this Case Study” on page 10-19

“Creating the Read/Write Head Model” on page 10-19

“Model Discretization” on page 10-20

“Adding a Compensator Gain” on page 10-22

“Adding a Lead Network” on page 10-23

“Design Analysis” on page 10-26

Overview of this Case Study

This case study demonstrates the ability to perform classical digital control
design by going through the design of a computer hard-disk read/write head
position controller.

Creating the Read/Write Head Model
Using Newton’s law, a simple model for the read/write head is the differential
equation

10-19

10 Design Case Studies

where is the inertia of the head assembly, is the viscous damping
coefficient of the bearings, is the return spring constant, is the motor
torque constant, is the angular position of the head, and is the input
current.

Taking the Laplace transform, the transfer function from to is

Using the values kg , Nm/(rad/sec), Nm/rad, and
Nm/rad, form the transfer function description of this system. At

the MATLAB prompt, type

J = .01; C = 0.004; K = 10; Ki = .05;
num = Ki;
den = [J C K];
H = tf(num,den)

MATLAB responds with

Transfer function:
0.05

0.01 s^2 + 0.004 s + 10

Model Discretization
The task here is to design a digital controller that provides accurate
positioning of the read/write head. The design is performed in the digital
domain. First, discretize the continuous plant. Because our plant will be
equipped with a digital-to-analog converter (with a zero-order hold) connected
to its input, use c2d with the 'zoh' discretization method. Type

Ts = 0.005; % sampling period = 0.005 second
Hd = c2d(H,Ts,'zoh')

10-20

Hard-Disk Read/Write Head Controller

Transfer function:
6.233e-05 z + 6.229e-05

z^2 - 1.973 z + 0.998

Sampling time: 0.005

You can compare the Bode plots of the continuous and discretized models with

bode(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type

step(Hd)

10-21

10 Design Case Studies

The system oscillates quite a bit. This is probably due to very light damping.
You can check this by computing the open-loop poles. Type

% Open-loop poles of discrete model

damp(Hd)

Eigenvalue Magnitude Equiv. Damping Equiv. Freq.

9.87e-01 + 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

9.87e-01 - 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

The poles have very light equivalent damping and are near the unit circle.
You need to design a compensator that increases the damping of these poles.

Adding a Compensator Gain
The simplest compensator is just a gain, so try the root locus technique to
select an appropriate feedback gain.

rlocus(Hd)

10-22

Hard-Disk Read/Write Head Controller

As shown in the root locus, the poles quickly leave the unit circle and go
unstable. You need to introduce some lead or a compensator with some zeros.

Adding a Lead Network
Try the compensator

with and .

The corresponding open-loop model

10-23

10 Design Case Studies

is obtained by the series connection

D = zpk(0.85,0,1,Ts)
oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bode(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the
compensator is the solid line.

10-24

Hard-Disk Read/Write Head Controller

The plot above shows that the compensator has shifted up the phase plot
(added lead) in the frequency range rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)
zgrid

Open the Property Editor by right-clicking in the plot away from the curve.
On the Limits page, set the x- and y-axis limits from -1 to 1.01. This figure
shows the result.

This time, the poles stay within the unit circle for some time (the lines drawn
by zgrid show the damping ratios from to 1 in steps of 0.1). Use a data
marker to find the point on the curve where the gain equals 4.111e+03. This
figure shows the data marker at the correct location.

10-25

10 Design Case Studies

Design Analysis
To analyze this design, form the closed-loop system and plot the closed-loop
step response.

K = 4.11e+03;
cloop = feedback(oloop,K);
step(cloop)

10-26

Hard-Disk Read/Write Head Controller

This response depends on your closed loop set point. The one shown here
is relatively fast and settles in about 0.07 seconds. Therefore, this closed
loop disk drive system has a seek time of about 0.07 seconds. This is slow by
today’s standards, but you also started with a very lightly damped system.

Now look at the robustness of your design. The most common classical
robustness criteria are the gain and phase margins. Use the function margin
to determine these margins. With output arguments, margin returns the
gain and phase margins as well as the corresponding crossover frequencies.
Without output argument, margin plots the Bode response and displays the
margins graphically.

To compute the margins, first form the unity-feedback open loop by connecting
the compensator , plant model, and feedback gain in series.

olk = K * oloop;

10-27

10 Design Case Studies

Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);
Margins = [Gm Wcg Pm Wcp]
Margins =

3.7987 296.7978 43.2031 106.2462

To obtain the gain margin in dB, type

20*log10(Gm)
ans =

11.5926

You can also display the margins graphically by typing

margin(olk)

The command produces the plot shown below.

10-28

Hard-Disk Read/Write Head Controller

This design is robust and can tolerate a 11 dB gain increase or a 40 degree
phase lag in the open-loop system without going unstable. By continuing this
design process, you may be able to find a compensator that stabilizes the
open-loop system and allows you to reduce the seek time.

10-29

10 Design Case Studies

LQG Regulation: Rolling Mill Example

In this section...

“Overview of this Case Study” on page 10-30

“Process and Disturbance Models” on page 10-30

“LQG Design for the x-Axis” on page 10-34

“LQG Design for the y-Axis” on page 10-40

“Cross-Coupling Between Axes” on page 10-42

“MIMO LQG Design” on page 10-45

Overview of this Case Study
This case study demonstrates the use of the LQG design tools in a process
control application. The goal is to regulate the horizontal and vertical
thickness of the beam produced by a hot steel rolling mill. This example is
adapted from [1]. The full plant model is MIMO and the example shows
the advantage of direct MIMO LQG design over separate SISO designs for
each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models
The rolling mill is used to shape rectangular beams of hot metal. The desired
outgoing shape is sketched below.

10-30

LQG Regulation: Rolling Mill Example

This shape is impressed by two pairs of rolling cylinders (one per axis)
positioned by hydraulic actuators. The gap between the two cylinders is called
the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes
within the quality assurance tolerances. Variations in output thickness can
arise from the following:

• Variations in the thickness/hardness of the incoming beam

• Eccentricity in the rolling cylinders

10-31

10 Design Case Studies

Feedback control is necessary to reduce the effect of these disturbances.
Because the roll gap cannot be measured close to the mill stand, the rolling
force is used instead for feedback.

The input thickness disturbance is modeled as a low pass filter driven by
white noise. The eccentricity disturbance is approximately periodic and its
frequency is a function of the rolling speed. A reasonable model for this
disturbance is a second-order bandpass filter driven by white noise.

This leads to the following generic model for each axis of the rolling process.

The measured rolling force variation is a combination of the incremental
force delivered by the hydraulic actuator and of the disturbance forces due to
eccentricity and input thickness variation. Note that:

10-32

LQG Regulation: Rolling Mill Example

• The outputs of , and are the incremental forces delivered
by each component.

• An increase in hydraulic or eccentricity force reduces the output thickness
gap .

• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

Model Data for the x-Axis

Model Data for the y-Axis

10-33

10 Design Case Studies

LQG Design for the x-Axis
As a first approximation, ignore the cross-coupling between the - and -axes
and treat each axis independently. That is, design one SISO LQG regulator
for each axis. The design objective is to reduce the thickness variations

and due to eccentricity and input thickness disturbances.

Start with the -axis. First specify the model components as transfer function
objects.

% Hydraulic actuator (with input "u-x")
Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

% Input thickness/hardness disturbance model
Fix = tf(1e4,[1 0.05],'inputn','w-ix')

% Rolling eccentricity model
Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap
gx = 1e-6;

Next build the open-loop model shown in “Process and Disturbance Models”
on page 10-30. You could use the function connect for this purpose, but it is
easier to build this model by elementary append and series connections.

% I/O map from inputs to forces f1 and f2
Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs "x-gap" and "x-force"
Px = [-gx gx;1 1] * Px

% Give names to the outputs:
set(Px,'outputn',{'x-gap' 'x-force'})

10-34

LQG Regulation: Rolling Mill Example

Note To obtain minimal state-space realizations, always convert transfer
function models to state space before connecting them. Combining transfer
functions and then converting to state space may produce nonminimal
state-space models.

The variable Px now contains an open-loop state-space model complete with
input and output names.

Px.inputname

ans =
'u-x'
'w-ex'
'w-ix'

Px.outputname

ans =
'x-gap'
'x-force'

The second output 'x-force' is the rolling force measurement. The LQG
regulator will use this measurement to drive the hydraulic actuator and
reduce disturbance-induced thickness variations .

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance
measure of the form

2 Design a Kalman filter that estimates the state vector given the force
measurements 'x-force'.

The performance criterion penalizes low and high frequencies equally.
Because low-frequency variations are of primary concern, eliminate the

10-35

10 Design Case Studies

high-frequency content of with the low-pass filter and use the
filtered value in the LQ performance criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px
Pxdes = append(lpf,1) * Px
set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4
kx = lqry(Pxdes(1,1),1,1e-4)

Note lqry expects all inputs to be commands and all outputs to be
measurements. Here the command 'u-x' and the measurement 'x-gap*'
(filtered gap) are the first input and first output of Pxdes. Hence, use the
syntax Pxdes(1,1) to specify just the I/O relation between 'u-x' and
'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process
noise

has unit covariance by construction. Set the measurement noise covariance
to 1000 to limit the high frequency gain, and keep only the measured output
'x-force' for estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

Finally, connect the state-feedback gain kx and state estimator estx to form
the LQG regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the -axis.

10-36

LQG Regulation: Rolling Mill Example

Let’s look at the regulator Bode response between 0.1 and 1000 rad/sec.

bode(Regx,{0.1 1000})

The phase response has an interesting physical interpretation. First,
consider an increase in input thickness. This low-frequency disturbance
boosts both output thickness and rolling force. Because the regulator phase
is approximately 0o at low frequencies, the feedback loop then adequately
reacts by increasing the hydraulic force to offset the thickness increase. Now
consider the effect of eccentricity. Eccentricity causes fluctuations in the roll
gap (gap between the rolling cylinders). When the roll gap is minimal, the
rolling force increases and the beam thickness diminishes. The hydraulic
force must then be reduced (negative force feedback) to restore the desired
thickness. This is exactly what the LQG regulator does as its phase drops to
-180o near the natural frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to
thickness gap. Use feedback to close the loop. To help specify the feedback
connection, look at the I/O names of the plant Px and regulator Regx.

10-37

10 Design Case Studies

Px.inputname
ans =

'u-x'
'w-ex'
'w-ix'

Regx.outputname
ans =

'u-x'

Px.outputname
ans =

'x-gap'
'x-force'

Regx.inputname
ans =

'x-force'

This indicates that you must connect the first input and second output of Px
to the regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from
disturbance to thickness gap.

bode(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})

10-38

LQG Regulation: Rolling Mill Example

The dashed lines show the open-loop response. Note that the peak gain
of the eccentricity-to-gap response and the low-frequency gain of the
input-thickness-to-gap response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to the
white noise inputs and . Choose dt=0.01 as sampling period for
the simulation, and derive equivalent discrete white noise inputs for this
sampling rate.

dt = 0.01
t = 0:dt:50 % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].
% Equivalent discrete covariance is 1/dt
wx = sqrt(1/dt) * randn(2,length(t))

lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)

10-39

10 Design Case Studies

The dotted lines correspond to the open-loop response. In this simulation, the
LQG regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis
The LQG design for the -axis (regulation of the thickness) follows the
exact same steps as for the -axis.

% Specify model components
Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y')
Fiy = tf(2e4,[1 0.05],'inputn','w-iy')
Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')
gy = 0.5e-6 % force-to-gap gain

% Build open-loop model
Py = append([ss(Hy) Fey],Fiy)
Py = [-gy gy;1 1] * Py
set(Py,'outputn',{'y-gap' 'y-force'})

10-40

LQG Regulation: Rolling Mill Example

% State-feedback gain design
Pydes = append(lpf,1) * Py % Add low-freq. weigthing
set(Pydes,'outputn',{'y-gap*' 'y-force'})
ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design
esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop
Regy = lqgreg(esty,ky)
cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input
disturbances.

dt = 0.01
t = 0:dt:50
wy = sqrt(1/dt) * randn(2,length(t))

lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

10-41

10 Design Case Studies

The dotted lines correspond to the open-loop response. The simulation results
are comparable to those for the -axis.

Cross-Coupling Between Axes
The / thickness regulation, is a MIMO problem. So far you have treated
each axis separately and closed one SISO loop at a time. This design is valid
as long as the two axes are fairly decoupled. Unfortunately, this rolling mill
process exhibits some degree of cross-coupling between axes. Physically, an
increase in hydraulic force along the -axis compresses the material, which
in turn boosts the repelling force on the -axis cylinders. The result is an
increase in -thickness and an equivalent (relative) decrease in hydraulic
force along the -axis.

The figure below shows the coupling.

10-42

LQG Regulation: Rolling Mill Example

Accordingly, the thickness gaps and rolling forces are related to the outputs
of the - and -axis models by

10-43

10 Design Case Studies

Let’s see how the previous "decoupled" LQG design fares when cross-coupling
is taken into account. To build the two-axes model, shown above, append the
models Px and Py for the - and -axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and
thickness gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])
P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;
CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]
Pc = CCmat * P
Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2 % first two inputs of Pc are the commands
feedout = 3:4 % last two outputs of Pc are the measurements
cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

10-44

LQG Regulation: Rolling Mill Example

You are now ready to simulate the open- and closed-loop responses to the
driving white noises wx (for the -axis) and wy (for the -axis).

wxy = [wx ; wy]
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

The response reveals a severe deterioration in regulation performance along
the -axis (the peak thickness variation is about four times larger than in the
simulation without cross-coupling). Hence, designing for one loop at a time is
inadequate for this level of cross-coupling, and you must perform a joint-axis
MIMO design to correctly handle coupling effects.

MIMO LQG Design
Start with the complete two-axis state-panespace model Pc derived in
“Cross-Coupling Between Axes” on page 10-42. The model inputs and outputs
are

Pc.inputname

10-45

10 Design Case Studies

ans =
'u-x'
'u-y'
'w-ex'
'w-ix'
'w_ey'
'w_iy'

P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap'
outputs to penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two
commands and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2)) % Kalman estimator

RegMIMO = lqgreg(est,k) % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans =
'x-force'
'y-force'

RegMIMO.outputname

10-46

LQG Regulation: Rolling Mill Example

ans =
'u-x'
'u-y'

Plot its singular value response (principal gains).

sigma(RegMIMO)

Next, plot the open- and closed-loop time responses to the white noise inputs
(using the MIMO LQG regulator for feedback).

% Form the closed-loop model
cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

10-47

10 Design Case Studies

The MIMO design is a clear improvement over the separate SISO designs for
each axis. In particular, the level of / thickness variation is now comparable
to that obtained in the decoupled case. This example illustrates the benefits
of direct MIMO design for multivariable systems.

10-48

Kalman Filtering

Kalman Filtering

In this section...

“Overview of this Case Study” on page 10-49

“Discrete Kalman Filter” on page 10-50

“Steady-State Design” on page 10-51

“Time-Varying Kalman Filter” on page 10-57

“Time-Varying Design” on page 10-58

“References” on page 10-61

Overview of this Case Study
This final case study illustrates the use of the Control System Toolbox for
Kalman filter design and simulation. Both steady-state and time-varying
Kalman filters are considered.

Consider the discrete plant

with additive Gaussian noise on the input and data

A = [1.1269 -0.4940 0.1129
1.0000 0 0

0 1.0000 0];

B = [-0.3832
0.5919
0.5191];

C = [1 0 0];

Our goal is to design a Kalman filter that estimates the output given the
inputs and the noisy output measurements

10-49

10 Design Case Studies

where is some Gaussian white noise.

Discrete Kalman Filter
The equations of the steady-state Kalman filter for this problem are given as
follows.

Measurement update

Time update

In these equations:

• is the estimate of given past measurements up to

• is the updated estimate based on the last measurement

Given the current estimate , the time update predicts the state value
at the next sample (one-step-ahead predictor). The measurement
update then adjusts this prediction based on the new measurement .
The correction term is a function of the innovation, that is, the discrepancy.

between the measured and predicted values of . The innovation gain
is chosen to minimize the steady-state covariance of the estimation error

given the noise covariances

You can combine the time and measurement update equations into one
state-space model (the Kalman filter).

10-50

Kalman Filtering

This filter generates an optimal estimate of . Note that the filter
state is .

Steady-State Design
You can design the steady-state Kalman filter described above with the
function kalman. First specify the plant model with the process noise.

This is done by

% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...

'outputname','y');

Assuming that , you can now design the discrete Kalman filter by

Q = 1; R = 1;
[kalmf,L,P,M] = kalman(Plant,Q,R);

This returns a state-space model kalmf of the filter as well as the innovation
gain

M

M =
3.7980e-01
8.1732e-02

-2.5704e-01

The inputs of kalmf are and , and its outputs are the plant output and
state estimates and .

10-51

10 Design Case Studies

Because you are interested in the output estimate , keep only the first
output of kalmf. Type

kalmf = kalmf(1,:);
kalmf
a =

x1_e x2_e x3_e
x1_e 0.7683 -0.494 0.1129
x2_e 0.6202 0 0
x3_e -0.081732 1 0

b =
u y

x1_e -0.3832 0.3586
x2_e 0.5919 0.3798
x3_e 0.5191 0.081732

c =
x1_e x2_e x3_e

y_e 0.6202 0 0

d =
u y

y_e 0 0.3798

I/O groups:
Group name I/O Channel(s)
KnownInput I 1

Measurement I 2
OutputEstimate O 1

10-52

Kalman Filtering

Sampling time: unspecified
Discrete-time model.

To see how the filter works, generate some input data and random noise and
compare the filtered response with the true response . You can either
generate each response separately, or generate both together. To simulate
each response separately, use lsim with the plant alone first, and then with
the plant and filter hooked up together. The joint simulation alternative is
detailed next.

The block diagram below shows how to generate both true and filtered outputs.

You can construct a state-space model of this block diagram with the functions
parallel and feedback. First build a complete plant model with as
inputs and (measurements) as outputs.

a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0;0 0 1];
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},...
'outputname',{'y' 'yv'});

Then use parallel to form the following parallel connection.

10-53

10 Design Case Studies

sys = parallel(P,kalmf,1,1,[],[])

Finally, close the sensor loop by connecting the plant output to the filter
input with positive feedback.

% Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)
% Delete yv from I/O list
SimModel = SimModel([1 3],[1 2 3])

The resulting simulation model has as inputs and as outputs.

SimModel.inputname

ans =
'w'
'v'
'u'

SimModel.outputname

ans =
'y'
'y_e'

10-54

Kalman Filtering

You are now ready to simulate the filter behavior. Generate a sinusoidal input
and process and measurement noise vectors and .

t = [0:100]';
u = sin(t/5);

n = length(t)
randn('seed',0)
w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Now simulate with lsim.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1); % true response
ye = out(:,2); % filtered response
yv = y + v; % measured response

and compare the true and filtered responses graphically.

subplot(211), plot(t,y,'--',t,ye,'-'),
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),
xlabel('No. of samples'), ylabel('Error')

10-55

10 Design Case Studies

The first plot shows the true response (dashed line) and the filtered output
(solid line). The second plot compares the measurement error (dash-dot)

with the estimation error (solid). This plot shows that the noise level has been
significantly reduced. This is confirmed by the following error covariance
computations.

MeasErr = y-yv;
MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

The error covariance before filtering (measurement error) is

MeasErrCov

MeasErrCov =
1.1138

while the error covariance after filtering (estimation error) is only

10-56

Kalman Filtering

EstErrCov

EstErrCov =
0.2722

Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter
for time-varying systems or LTI systems with nonstationary noise covariance.
Given the plant state and measurement equations

the time-varying Kalman filter is given by the recursions

Measurement update

Time update

with and as defined in “Discrete Kalman Filter” on page
10-50, and in the following.

10-57

10 Design Case Studies

For simplicity, we have dropped the subscripts indicating the time dependence
of the state-space matrices.

Given initial conditions and , you can iterate these equations
to perform the filtering. Note that you must update both the state estimates

and error covariance matrices at each time sample.

Time-Varying Design
Although the Control System Toolbox does not offer specific commands to
perform time-varying Kalman filtering, it is easy to implement the filter
recursions in MATLAB. This section shows how to do this for the stationary
plant considered above.

First generate noisy output measurements

% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,-1);
y = lsim(sys,u+w); % w = process noise
yv = y + v; % v = measurement noise

Given the initial conditions

you can implement the time-varying filter with the following for loop.

P = B*Q*B'; % Initial error covariance
x = zeros(3,1); % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1);

for i=1:length(t)
% Measurement update
Mn = P*C'/(C*P*C'+R);
x = x + Mn*(yv(i)-C*x); % x[n|n]
P = (eye(3)-Mn*C)*P; % P[n|n]

ye(i) = C*x;
errcov(i) = C*P*C';

10-58

Kalman Filtering

% Time update
x = A*x + B*u(i); % x[n+1|n]
P = A*P*A' + B*Q*B'; % P[n+1|n]

end

You can now compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')
title('Time-varying Kalman filter response')
xlabel('No. of samples'), ylabel('Output')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')
xlabel('No. of samples'), ylabel('Output')

The first plot shows the true response (dashed line) and the filtered response
(solid line). The second plot compares the measurement error (dash-dot)

with the estimation error (solid).

10-59

10 Design Case Studies

The time-varying filter also estimates the covariance errcov of the estimation
error at each sample. Plot it to see if your filter reached steady state
(as you expect with stationary input noise).

subplot(211)
plot(t,errcov), ylabel('Error covar')

From this covariance plot, you can see that the output covariance did indeed
reach a steady state in about five samples. From then on, your time-varying
filter has the same performance as the steady-state version.

Compare with the estimation error covariance derived from the experimental
data. Type

EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr)
EstErrCov =

0.2718

10-60

Kalman Filtering

This value is smaller than the theoretical value errcov and close to the value
obtained for the steady-state design.

Finally, note that the final value and the steady-state value of the
innovation gain matrix coincide.

Mn, M

Mn =
0.3798
0.0817

-0.2570

M =
0.3798
0.0817

-0.2570

References

[1] [Grimble, M.J., Robust Industrial Control: Optimal Design Approach for
Polynomial Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.

10-61

10 Design Case Studies

10-62

11

Reliable Computations

Introduction (p. 11-2) The general problem of achieving
reliable computations

Conditioning and Numerical
Stability (p. 11-4)

The key concepts of the conditioning
of problems and the stability of
algorithms

Choice of LTI Model (p. 11-8) The implications of LTI Model
format choice

Scaling (p. 11-15) How to scale matrices to improve
their condition numbers

Summary (p. 11-17) The important points to remember

References (p. 11-18) Relevant control and numerics
literature

11 Reliable Computations

Introduction

In this section...

“Requirements for Obtaining a Numerically Accurate Answer” on page 11-2

“When You Can Accurately Use Unreliable Tools” on page 11-3

Requirements for Obtaining a Numerically Accurate
Answer
When working with low-order SISO models (less than five states), computers
are usually quite forgiving and insensitive to numerical problems. You
generally won’t encounter any numerical difficulties and MATLAB will
give you accurate answers regardless of the model or conversion method
you choose. For high order SISO models and MIMO models, however, the
finite-precision arithmetic of a computer is not so forgiving and you must
exercise caution.

In general, to get a numerically accurate answer from a computer, you need

• A well-conditioned problem

• An algorithm that is numerically stable in finite-precision arithmetic

• A good software implementation of the algorithm

A problem is said to be well-conditioned if small changes in the data cause
only small corresponding changes in the solution. If small changes in the
data have the potential to induce large changes in the solution, the problem
is said to be ill-conditioned. An algorithm is numerically stable if it does
not introduce any more sensitivity to perturbation than is already inherent
in the problem. Many numerical linear algebra algorithms can be shown to
be backward stable; i.e., the computed solution can be shown to be (near)
the exact solution of a slightly perturbed original problem. The solution of
a slightly perturbed original problem will be close to the true solution if the
problem is well-conditioned.

Thus, a stable algorithm cannot be expected to solve an ill-conditioned
problem any more accurately than the data warrant, but an unstable

11-2

Introduction

algorithm can produce poor solutions even to well-conditioned problems. For
further details and references to the literature see [5].

When You Can Accurately Use Unreliable Tools
While most of the tools in the Control System Toolbox use reliable algorithms,
some of the tools do not use stable algorithms and some solve ill-conditioned
problems. These unreliable tools work quite well on some problems (low-order
systems) but can encounter numerical difficulties, often severe, when pushed
on higher-order problems. These tools are provided because

• They are quite useful for low-order systems, which form the bulk of
real-world engineering problems.

• Many control engineers think in terms of these tools.

• A more reliable alternative tool is usually available in this toolbox.

• They are convenient for pedagogical purposes.

At the same time, it is important to appreciate the limitations of computer
analyses. By following a few guidelines, you can avoid certain tools and
models when they are likely to get you into trouble. The following sections try
to illustrate, through examples, some of the numerical pitfalls to be avoided.
We also encourage you to get the most out of the good algorithms by ensuring,
if possible, that your models give rise to problems that are well-conditioned.

11-3

11 Reliable Computations

Conditioning and Numerical Stability

In this section...

“Conditioning” on page 11-4

“Numerical Stability” on page 11-6

Conditioning
Consider the linear system given by

A =
0.7800 0.5630
0.9130 0.6590

b =
0.2170
0.2540

The true solution is x = [1, -1]' and you can calculate it approximately
using MATLAB.

x = A\b
x =

1.0000
-1.0000

format long, x
x =

0.99999999991008
-0.99999999987542

Of course, in real problems you almost never have the luxury of knowing the
true solution. This problem is very ill-conditioned. To see this, add a small
perturbation to A

E =
0.0010 0.0010

-0.0020 -0.0010

and solve the perturbed system

11-4

Conditioning and Numerical Stability

xe = (A+E)\b
xe =

-5.0000
7.3085

Notice how much the small change in the data is magnified in the solution.

One way to measure the magnification factor is by means of the quantity

called the condition number of with respect to inversion. The condition
number determines the loss in precision due to roundoff errors in Gaussian
elimination and can be used to estimate the accuracy of results obtained
from matrix inversion and linear equation solution. It arises naturally in

perturbation theories that compare the perturbed solution with
the true solution .

In MATLAB, the function cond calculates the condition number in 2-norm.
cond(A) is the ratio of the largest singular value of A to the smallest. Try it
for the example above. The usual rule is that the exponent log10(cond(A))
on the condition number indicates the number of decimal places that the
computer can lose to roundoff errors.

IEEE standard double precision numbers have about 16 decimal digits of
accuracy, so if a matrix has a condition number of 1010, you can expect only
six digits to be accurate in the answer. If the condition number is much
greater than 1/sqrt(eps), caution is advised for subsequent computations.
For IEEE arithmetic, the machine precision, eps, is about -16, and
1/sqrt(eps) = 8.

Another important aspect of conditioning is that, in general, residuals are
reliable indicators of accuracy only if the problem is well-conditioned. To
illustrate, try computing the residual vector for the two candidate
solutions x = [0.999 -1.001]' and x = [0.341 -0.087]'. Notice that
the second, while clearly a much less accurate solution, gives a far smaller
residual. The conclusion is that residuals are unreliable indicators of relative
solution accuracy for ill-conditioned problems. This is a good reason to be

11-5

11 Reliable Computations

concerned with computing or estimating accurately the condition of your
problem.

Another simple example of an ill-conditioned problem is the -by- matrix
with ones on the first upper-diagonal.

A = diag(ones(1,n-1),1);

This matrix has eigenvalues at 0. Now consider a small perturbation of
the data consisting of adding the number to the first element in the last
(th) row of A. This perturbed matrix has n distinct eigenvalues with

. Thus, you can see that this small perturbation in the
data has been magnified by a factor on the order of to result in a rather
large perturbation in the solution (the eigenvalues of A).

It is important to realize that a matrix can be ill-conditioned with respect
to inversion but have a well-conditioned eigenproblem, and vice versa. For
example, consider an upper triangular matrix of ones (zeros below the
diagonal) given by

A = triu(ones(n));

This matrix is ill-conditioned with respect to its eigenproblem (try small
perturbations in A(n,1) for, say, n=20), but is well-conditioned with respect to
inversion (check its condition number). On the other hand, the matrix

has a well-conditioned eigenproblem, but is ill-conditioned with respect to
inversion for small .

Numerical Stability
Numerical stability is somewhat more difficult to illustrate meaningfully.
Consult the references in [5], [6], and [7] for further details. Here is one small
example to illustrate the difference between stability and conditioning.

11-6

Conditioning and Numerical Stability

Gaussian elimination with no pivoting for solving the linear system is
known to be numerically unstable. Consider

All computations are carried out in three-significant-figure decimal
arithmetic. The true answer is approximately

Using row 1 as the pivot row (i.e., subtracting 1000 times row 1 from row 2)
you arrive at the equivalent triangular system.

Note that the coefficient multiplying in the second equation should be
, but because of roundoff, becomes . As a result, the second

equation yields , a good approximation, but now back-substitution
in the first equation

yields . This extremely bad approximation of is the result
of numerical instability. The problem itself can be shown to be quite
well-conditioned. Of course, MATLAB implements Gaussian elimination
with pivoting.

11-7

11 Reliable Computations

Choice of LTI Model

In this section...

“Computational Reliability of Different Model Types” on page 11-8

“State Space” on page 11-8

“Transfer Function” on page 11-9

“Zero-Pole-Gain Models” on page 11-14

Computational Reliability of Different Model Types
Now turn to the implications of the results in the last section on the linear
modeling techniques used for control engineering. The Control System
Toolbox includes the following types of LTI models that are applicable to
discussions of computational reliability:

• State space

• Transfer function, polynomial form

• Transfer function, factored zero-pole-gain form

The following subsections show that state space is most preferable for
numerical computations.

State Space
The state-space representation is the most reliable LTI model to use for
computer analysis. This is one of the reasons for the popularity of "modern"
state-space control theory. Stable computer algorithms for eigenvalues,
frequency response, time response, and other properties of the
quadruple are known [5]and implemented in this toolbox. The state-space
model is also the most natural model in the MATLAB matrix environment.

Even with state-space models, however, accurate results are not guaranteed,
because of the problems of finite-word-length computer arithmetic discussed
in the last section. A well-conditioned problem is usually a prerequisite for
obtaining accurate results and makes it important to have reasonable scaling
of the data. Scaling is discussed further in “Scaling” on page 11-15.

11-8

Choice of LTI Model

Transfer Function
Transfer function models, when expressed in terms of expanded polynomials,
tend to be inherently ill-conditioned representations of LTI systems. For
systems of order greater than 10, or with very large/small polynomial
coefficients, difficulties can be encountered with functions like roots, conv,
bode, step, or conversion functions like ss or zpk.

A major difficulty is the extreme sensitivity of the roots of a polynomial to its
coefficients. This example is adapted from Wilkinson, [6]as an illustration.
Consider the transfer function

The matrix of the companion realization of is

Despite the benign looking poles of the system (at -1,-2,..., -20) you are faced
with a rather large range in the elements of , from 1 to . But
the difficulties don’t stop here. Suppose the coefficient of in the transfer
function (or) is perturbed from 210 to ().
Then, computed on a VAX (IEEE arithmetic has enough mantissa for only

), the poles of the perturbed transfer function (equivalently, the
eigenvalues of) are

eig(A)'

ans =

Columns 1 through 7
-19.9998 -19.0019 -17.9916 -17.0217 -15.9594 -15.0516 -13.9504

Columns 8 through 14

11-9

11 Reliable Computations

-13.0369 -11.9805 -11.0081 -9.9976 -9.0005 -7.9999 -7.0000

Columns 15 through 20
-6.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000

The problem here is not roundoff. Rather, high-order polynomials are simply
intrinsically very sensitive, even when the zeros are well separated. In this
case, a relative perturbation of the order of induced relative perturbations
of the order of in some roots. But some of the roots changed very
little. This is true in general. Different roots have different sensitivities to
different perturbations. Computed roots may then be quite meaningless for a
polynomial, particularly high-order, with imprecisely known coefficients.

Finding all the roots of a polynomial (equivalently, the poles of a transfer
function or the eigenvalues of a matrix in controllable or observable canonical
form) is often an intrinsically sensitive problem. For a clear and detailed
treatment of the subject, including the tricky numerical problem of deflation,
consult [6].

It is therefore preferable to work with the factored form of polynomials when
available. To compute a state-space model of the transfer function
defined above, for example, you could expand the denominator of , convert
the transfer function model to state space, and extract the state-space data by

H1 = tf(1,poly(1:20))
H1ss = ss(H1)
[a1,b1,c1] = ssdata(H1)

However, you should rather keep the denominator in factored form and work
with the zero-pole-gain representation of .

H2 = zpk([],1:20,1)
H2ss = ss(H2)
[a2,b2,c2] = ssdata(H2)

Indeed, the resulting state matrix a2 is better conditioned.

[cond(a1) cond(a2)]

ans =

11-10

Choice of LTI Model

2.7681e+03 8.8753e+01

and the conversion from zero-pole-gain to state space incurs no loss of
accuracy in the poles.

format long e
[sort(eig(a1)) sort(eig(a2))]

ans =
9.999999999998792e-01 1.000000000000000e+00
2.000000000001984e+00 2.000000000000000e+00
3.000000000475623e+00 3.000000000000000e+00
3.999999981263996e+00 4.000000000000000e+00
5.000000270433721e+00 5.000000000000000e+00
5.999998194359617e+00 6.000000000000000e+00
7.000004542844700e+00 7.000000000000000e+00
8.000013753274901e+00 8.000000000000000e+00
8.999848908317270e+00 9.000000000000000e+00
1.000059459550623e+01 1.000000000000000e+01
1.099854678336595e+01 1.100000000000000e+01
1.200255822210095e+01 1.200000000000000e+01
1.299647702454549e+01 1.300000000000000e+01
1.400406940833612e+01 1.400000000000000e+01
1.499604787386921e+01 1.500000000000000e+01
1.600304396718421e+01 1.600000000000000e+01
1.699828695210055e+01 1.700000000000000e+01
1.800062935148728e+01 1.800000000000000e+01
1.899986934359322e+01 1.900000000000000e+01
2.000001082693916e+01 2.000000000000000e+01

There is another difficulty with transfer function models when realized in
state-space form with ss. They may give rise to badly conditioned eigenvector
matrices, even if the eigenvalues are well separated. For example, consider
the normal matrix

A = [5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4]

11-11

11 Reliable Computations

Its eigenvectors and eigenvalues are given as follows.

[v,d] = eig(A)

v =
0.7071 -0.0000 -0.3162 0.6325

-0.7071 0.0000 -0.3162 0.6325
0.0000 0.7071 0.6325 0.3162

-0.0000 -0.7071 0.6325 0.3162

d =
1.0000 0 0 0

0 2.0000 0 0
0 0 5.0000 0
0 0 0 10.0000

The condition number (with respect to inversion) of the eigenvector matrix is

cond(v)

ans =
1.000

Now convert a state-space model with the above A matrix to transfer function
form, and back again to state-space form.

b = [1 ; 1 ; 0 ; -1];
c = [0 0 2 1];
H = tf(ss(A,b,c,0)); % Transfer function
[Ac,bc,cc] = ssdata(H) % Convert back to state space

The new A matrix is

Ac =
18.0000 -6.0625 2.8125 -1.5625
16.0000 0 0 0

0 4.0000 0 0
0 0 1.0000 0

Note that Ac is not a standard companion matrix and has already been
balanced as part of the ss conversion (see ssbal for details).

11-12

Choice of LTI Model

Note also that the eigenvectors have changed.

[vc,dc] = eig(Ac)

vc =
-0.5017 0.2353 0.0510 0.0109
-0.8026 0.7531 0.4077 0.1741
-0.3211 0.6025 0.8154 0.6963
-0.0321 0.1205 0.4077 0.6963

dc =
10.0000 0 0 0

0 5.0000 0 0
0 0 2.0000 0
0 0 0 1.0000

The condition number of the new eigenvector matrix

cond(vc)

ans =
34.5825

is thirty times larger.

The phenomenon illustrated above is not unusual. Matrices in companion
form or controllable/observable canonical form (like Ac) typically have
worse-conditioned eigensystems than matrices in general state-space form
(like A). This means that their eigenvalues and eigenvectors are more sensitive
to perturbation. The problem generally gets far worse for higher-order
systems. Working with high-order transfer function models and converting
them back and forth to state space is numerically risky.

In summary, the main numerical problems to be aware of in dealing with
transfer function models (and hence, calculations involving polynomials) are

• The potentially large range of numbers leads to ill-conditioned problems,
especially when such models are linked together giving high-order
polynomials.

11-13

11 Reliable Computations

• The pole locations are very sensitive to the coefficients of the denominator
polynomial.

• The balanced companion form produced by ss, while better than the
standard companion form, often results in ill-conditioned eigenproblems,
especially with higher-order systems.

The above statements hold even for systems with distinct poles, but are
particularly relevant when poles are multiple.

Zero-Pole-Gain Models
The third major representation used for LTI models in MATLAB is the
factored, or zero-pole-gain (ZPK) representation. It is sometimes very
convenient to describe a model in this way although most major design
methodologies tend to be oriented toward either transfer functions or
state-space.

In contrast to polynomials, the ZPK representation of systems can be more
reliable. At the very least, the ZPK representation tends to avoid the
extraordinary arithmetic range difficulties of polynomial coefficients, as
illustrated in “Transfer Function” on page 11-9. The transformation from
state space to zero-pole-gain is stable, although the handling of infinite zeros
can sometimes be tricky, and repeated roots can cause problems.

If possible, avoid repeated switching between different model representations.
As discussed in the previous sections, when transformations between models
are not numerically stable, roundoff errors are amplified.

11-14

Scaling

Scaling
State space is the preferred model for LTI systems, especially with higher
order models. Even with state-space models, however, accurate results are
not guaranteed, because of the finite-word-length arithmetic of the computer.
A well-conditioned problem is usually a prerequisite for obtaining accurate
results.

You should generally normalize or scale the matrices of a system
to improve their conditioning. An example of a poorly scaled problem might
be a dynamic system where two states in the state vector have units of light
years and millimeters. You would expect the matrix to contain both very
large and very small numbers. Matrices containing numbers widely spread
in value are often poorly conditioned both with respect to inversion and with
respect to their eigenproblems, and inaccurate results can ensue.

Normalization also allows meaningful statements to be made about the degree
of controllability and observability of the various inputs and outputs.

A set of matrices can be normalized using diagonal scaling
matrices , , and to scale u, x, and y.

so the normalized system is

where

Choose the diagonal scaling matrices according to some appropriate
normalization procedure. One criterion is to choose the maximum range of
each of the input, state, and output variables. This method originated in
the days of analog simulation computers when , , and were forced to

11-15

11 Reliable Computations

be between Volts. A second method is to form scaling matrices where
the diagonal entries are the smallest deviations that are significant to each
variable. An excellent discussion of scaling is given in the introduction to the
LINPACK Users’ Guide, [1].

Choose scaling based upon physical insight to the problem at hand. If you
choose not to scale, and for many small problems scaling is not necessary, be
aware that this choice affects the accuracy of your answers.

Finally, note that the function ssbal performs automatic scaling of the state
vector. Specifically, it seeks to minimize the norm of

by using diagonal scaling matrices . Such diagonal scaling is an economical
way to compress the numerical range and improve the conditioning of
subsequent state-space computations.

11-16

Summary

Summary
This chapter has described numerous things that can go wrong when
performing numerical computations. You won’t encounter most of these
difficulties when you solve practical lower-order problems. The problems
described here pertain to all computer analysis packages. MATLAB has some
of the best algorithms available, and, where possible, notifies you when there
are difficulties. The important points to remember are

• State-space models are, in general, the most reliable models for subsequent
computations.

• Scaling model data can improve the accuracy of your results.

• Numerical computing is a tricky business, and virtually all computer tools
can fail under certain conditions.

11-17

11 Reliable Computations

References
[1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK User’s
Guide, SIAM Publications, Philadelphia, PA, 1978.

[2] Franklin, G.F. and J.D. Powell, Digital Control of Dynamic Systems,
Addison-Wesley, 1980.

[3] Kailath, T., Linear Systems, Prentice-Hall, 1980.

[4] Laub, A.J., "Numerical Linear Algebra Aspects of Control Design
Computations," IEEE Transactions on Automatic Control, Vol. AC-30, No. 2,
February 1985, pp. 97-108.

[5] Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-Hall,
1963.

[6] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University
Press, 1965.

11-18

12

SISO Design Tool

Overview of the SISO Design Tool
(p. 12-2)

A quick overview of the tools that
make up the SISO Design Tool

Opening the SISO Design Tool
(p. 12-3)

Describes how to launch the SISO
Design Tool.

Using the SISO Design Task Node
(p. 12-4)

A discussion of the starting point for
your design.

Using the SISO Design Task in
the Controls & Estimation Tools
Manager (p. 12-11)

How to specify control architecture,
create and edit compensators, create
analysis plots, and set up automatic
compensator tuning.

SISO Design Task Graphical Tuning
Window (p. 12-41)

Viewing design plots and graphically
manipulating compensators,
prefilters, and sensors.

Using the Graphical Tuning Window
Menu Bar (p. 12-42)

A discussion of the features of the
Graphical Tuning window’s menu
bar.

Using the Graphical Tuning Window
Toolbar (p. 12-53)

A discussion of the features of the
Graphical Tuning window’s tool bar.

Using the Right-Click Menus in the
Graphical Tuning Window (p. 12-54)

How to use right-click menus to
speed up the design process.

LTI Viewer for SISO Design Task
Design Requirements (p. 12-74)

Specifying design requirement in
analysis plots.

12 SISO Design Tool

Overview of the SISO Design Tool
The SISO Design Tool is a graphical-user interface (GUI) that allows you to
design compensators.

The SISO Design Tool is made up of the following:

• The SISO Design Task Node in the Control and Estimation Tools Manager,
a user interface (UI) that facilitates the design of compensators for
single-input, single-output feedback loops through a series of interactive
panes.

• The Graphical Tuning Window, a graphical user interface (GUI) for
displaying and manipulating the Bode, root locus, and Nichols plots for the
controller currently being designed. This window is titled SISO Design
for Design Name. The Graphical Tuning Window by default displays the
root locus and Bode diagrams for your imported systems. The two are
dynamically linked; for example, if you change the gain in the root locus, it
immediately affects the Bode diagrams as well.

• The SISO Design Task-associated LTI Viewer (For instructions on how to
operate the LTI Viewer, see Chapter 13, “LTI Viewer”)

• A tool that automatically generates compensators using PID, internal
model control (IMC), or linear-quadratic-Gaussian (LQG) methods.

• A response optimization tool that automatically tunes the system to
satisfy design requirements (available if you have Simulink Response
Optimization installed).

This tool is used extensively in Getting Started with the Control System
Toolbox. In particular, you should read Chapter 4, "Designing Compensators,"
of that book to see how to do typical design tasks with the SISO Design Tool.
This document, on the other hand, is a reference that describes all available
options for the SISO Design Tool.

12-2

Opening the SISO Design Tool

Opening the SISO Design Tool
Type

sisotool

to open the SISO Design Task node in the Control and Estimation Tools
Manager and the Graphical Tuning Window.

If you want to match the SISO Design Task pictures shown in this section, type

load ltiexamples

at the MATLAB prompt. This loads the same set of linear models that this
document uses as examples in the SISO Design Tool. The examples all use
the Gservo system for the system you want to control. Type

sisotool(Gservo)

at the MATLAB prompt to load the Gservo system into the SISO Design Tool.

12-3

12 SISO Design Tool

Using the SISO Design Task Node

In this section...

“The SISO Design Task Node” on page 12-4

“SISO Design Task Node Menu Bar” on page 12-5

The SISO Design Task Node
This picture shows the SISO Design Task node in the Control and Estimation
Tools Manager.

SISO Design Task Node on the Control and Estimation Tools Manager

12-4

Using the SISO Design Task Node

SISO Design Task Node Menu Bar
The SISO Design Task node menu bar contains the following menus:

File Menu Options

• Load

To load a saved SISO Design Tool project, select Load from the File menu.
This opens the Load Projects window.

Projects are saved as MAT-files. Select the project you want to load from
the list, or click ... to browse for projects you can select from, and click OK.

• Save

12-5

12 SISO Design Tool

You can quit MATLAB and later restore the SISO Design Tool to the state
you left it in by saving the project. Select Save from the File menu. This
opens the Save Projects window.

To save a project, specify a file name and click OK. The current state and
configuration of your SISO Design Tool are saved as a MAT-file. To load a
saved project, select Load from the File menu (see previous bullet).

• Export

Selecting Export from the File menu opens the SISO Tool Export window.

12-6

Using the SISO Design Task Node

With this window, you can:

- Export models to the MATLAB Workspace or to a disk

- Rename models when exporting

- Save variations on models, including open and closed loop models,
sensitivity transfer functions, and state-space representations

Exporting to the Workspace. To export models to the MATLAB
workspace, follow these steps:

1 Select the model you want to export from the Component list by left-clicking
the model name. To select more than one model, hold down the Shift key if
they are adjacent on the list. If you want to save nonadjacent models, hold
down the Ctrl key while selecting the models.

2 For each model you want to save, specify a name in the model’s cell in the
Export As list. A default name exists if you do not want to assign a new
name.

3 Click Export to Workspace.

12-7

12 SISO Design Tool

Exporting to a MAT-file. If you want to save your models in a MAT-file,
follow steps 1 and 2 and click Export to Disk, which opens this window.

Choose where you want to save the file in the Save in field and specify
the name you want for your MAT-file in the File name field. Click Save
to save the file.

• Close

Use Close to close the SISO Design Tool. This closes all components of
the SISO Design Tool.

Edit Menu Options

• Undo

Use Undo to go back in design steps. Note that the Undo menu changes
when the task you have just performed changes. For example, if you change
the compensator gain, the Undo menu item now reads Undo Edit Gain.

• Redo

Use Redo to go forward in the design steps. You can only use Redo if
you have previously used Undo. Like the Undo menu, the Redo menu
changes when the task you have just performed changes. For example, if
you change the compensator gain, and then select Undo Edit Gain, the
Redo menu item becomes Redo Edit Gain.

• SISO Tool Preferences

12-8

Using the SISO Design Task Node

Select SISO Tool Preferences from the File menu to open the SISO
Tool Preferences dialog box.

You can use this window to do the following:

- Change units

- Add plot grids, change font styles for titles, labels, etc., and change axes
foreground colors

- Change the compensator format

- Show or hide system poles and zeros in Bode diagrams

For a discussion of this window’s features, see Setting Toolbox Preferences"
online in the Control System Toolbox documentation

• Help

Selecting About the Control and Estimation Tools Manager opens a
window with the version number and a copyright notice for this product.

Buttons Available From Any Pane

Showing the Control Architecture. Click Show Architecture to open a
window that displays the block diagram for your model. For example,

12-9

12 SISO Design Tool

Below the block diagram is a table that shows the default names for each part
of the block diagram and the assigned name, if you have one.

Store Design. Click Store Design to save your design to your SISO Design
Task node. Click on Design under the node to see a snapshot summary of your
design. Click on the Design History node to show a list of all stored designs.

12-10

Using the SISO Design Task in the Controls & Estimation Tools Manager

Using the SISO Design Task in the Controls & Estimation
Tools Manager

In this section...

“Architecture” on page 12-11

“Compensator Editor” on page 12-18

“Graphical Tuning” on page 12-19

“Analysis Plots” on page 12-22

“Automated Tuning” on page 12-24

Architecture
Use the Architecture pane for

• “Modifying Block Diagram Structure” on page 12-12

• “Configuring Loops” on page 12-14

• “Importing Models” on page 12-15

• “Changing Sample Times” on page 12-17

12-11

12 SISO Design Tool

Architecture Pane on the SISO Design Task Node

Modifying Block Diagram Structure
Click Control Architecture to change the feedback structure and label
signals and blocks. The following pane appears:

12-12

Using the SISO Design Task in the Controls & Estimation Tools Manager

Select an architecture from the list of block configurations. These include
compensator in the forward path, compensator in the feedback path,
feedforward controller, and various multi-loop configurations.

Each configuration has associated Signs and Blocks and Signals panes. This
figure shows the Signs pane.

12-13

12 SISO Design Tool

The Blocks and Signals pane displays the generic identifier, for example F for
the prefilter block, and a default name.

Configuring Loops
Click Loop Configuration to configure loops for multi-loop design by
opening signals to remove the effects of other feedback loops.

12-14

Using the SISO Design Task in the Controls & Estimation Tools Manager

To specify openings for a given open loop, select the loop in the combo box.
Click Highlight Feedback Loop to see the effects of the selected openings.

For an example of how to use this window in design, see Multi-Loop
Compensator Design.

Importing Models
Click System Data on the Architecture pane to import models into your
system. This opens the System Data dialog box, which is shown below.

12-15

12 SISO Design Tool

You can import models for the plant (G), compensator (C), prefilter (F), and/or
sensor (H). To import a model:

1 Select a system in the System column and click Browse. The Model Import
dialog box opens, as shown below.

12-16

Using the SISO Design Task in the Controls & Estimation Tools Manager

2 Select a model from the Available Models list. You can import models
from:

• The MATLAB Workspace

• A MAT-file

3 Click Import, then click Close. You can now see the model loaded into the
system selected in the System Data dialog.

4 Click OK. The Graphical Tuning window is updated with the model you
loaded.

Alternatively, you can import by entering a valid expression or variable
(double or LTI object) in the Data column in the System Data window.

Changing Sample Times
Click Sample Time Conversion to convert the sample time of the system or
switch between different sample times to design different compensators.

12-17

12 SISO Design Tool

Choose from Zero-Order Hold, First-Order Hold, Impulse Variant, Tustin,
Tustin w/Prewarping, and Matched Pole-Zero.

For a full description, see “Continuous/Discrete Conversions” on page 12-48.

Compensator Editor
Use the Compensator Editor for adding or editing gains, poles, and zeros.

12-18

Using the SISO Design Task in the Controls & Estimation Tools Manager

Compensator Editor Pane on the SISO Design Task Node

1 Enter the compensator gain in the text box in the top part of the pane.

2 Add or remove compensator poles and zeros by right-clicking in the
Dynamics table.

3 Adjust pole and zero settings by entering values directly in the Edit
Selected Dynamics group box.

Graphical Tuning
Use the Graphical Tuning pane for

• “Configuring Design Plots for the Graphical Tuning Window” on page 12-20

• “Selecting New Loops to Tune” on page 12-22

• “Refocusing on the Graphical Tuning Window” on page 12-22

12-19

12 SISO Design Tool

Graphical Tuning Pane on the SISO Design Task Node

Configuring Design Plots for the Graphical Tuning Window
Click the Graphical Tuning tab to configure design plots displayed in the
Graphical Tuning Window.

12-20

Using the SISO Design Task in the Controls & Estimation Tools Manager

In the Graphical Tuning window, use design plots to graphically manipulate
system response. These design plots are dynamically linked to the SISO
Design Task. When you change the dynamics of your compensator in either
the SISO Design Task or the Graphical Tuning window, the design updates in
both places.

For open-loop responses, the available plot types are:

• Root locus

• Nichols

• Bode

For closed-loop responses, the available plot type is Bode.

12-21

12 SISO Design Tool

Selecting New Loops to Tune
Click New Open/Closed Loops to Tune to open a window for specifying
new loops to tune.

Use the pull down menus to select the desired closed loop to tune by specifying
the input, output, and blocks for tuning. Using the dialog box, you can select
additional closed loops to tune.

Any loop you specify is displayed in the Summary of Available Loops to
Tune in the Graphical Tuning pane. The list is also available in the Design
plots configuration table of the same pane. You can use the latter for
configuring design plots.

Refocusing on the Graphical Tuning Window
Click Show Design Plot to change the focus to the Graphical Tuning window.

Analysis Plots
Use the Analysis Plots pane for

12-22

Using the SISO Design Task in the Controls & Estimation Tools Manager

• “Customizing Loop Responses” on page 12-23

• “Adding New Response Plots” on page 12-24

• “Opening or Changing the Focus to the LTI Viewer” on page 12-24

Analysis Plots Pane on the SISO Design Task Node

Customizing Loop Responses
The following sections describe the main components of the Analysis Plots
pane.

Analysis Plots. You can have up to six plots in one LTI Viewer. To add a plot,
start by selecting "Plot 1" from the list of plots. Then select a new plot type
from the pull down menu. You can choose any of the plots available in the LTI
Viewer. Select "None" to remove a plot.

Contents of plots. Once you have selected a plot type, you can include
several open- and closed-loop transfer function responses for display. You can
plot open-loop responses for each of the components of your system, including
your compensator (C), plant (G), prefilter (F), or sensor (H). In addition,
various closed loop and sensitivity response plots are available.

12-23

12 SISO Design Tool

Adding New Response Plots
Click Add Responses to open a window with three drop-down menus for
selecting open and closed loop responses for various input and output nodes in
the control architecture block diagram. This allows you to select additional
responses for viewing. The Response table updates automatically to include
the selected response.

Opening or Changing the Focus to the LTI Viewer
Click Show Analysis Plot to open a new LTI Viewer for SISO Design with
the response plots that you selected. All the plots open in one instance of
the LTI Viewer.

Automated Tuning
Use the Automated Tuning pane to select a method for automatic tuning
of your compensator design. Automated tuning methods help you design an
initial compensator for a SISO loop that satisfies your design specifications.

12-24

Using the SISO Design Task in the Controls & Estimation Tools Manager

You can choose among the following algorithms:

• “Optimization-Based Tuning” on page 12-27 — Optimizes compensator
parameters using design requirements implemented in graphical tuning
and analysis plots.

• “PID Tuning” on page 12-28 — Searches for initial PID controller
parameters using the Ziegler-Nichols, IMC Based, and Singular Frequency
Based methods.

• “Internal Model Control (IMC) Tuning” on page 12-35 — Obtains a
full-order stabilizing feedback controller using the IMC design method.

• “LQG Synthesis” on page 12-37 — Designs a full-order stabilizing feedback
controller as a Linear-Quadratic-Gaussian (LQG) tracker.

• “Loop Shaping” on page 12-38 — Finds a full-order stabilizing feedback
controller with a desired open loop bandwidth or shape.

12-25

12 SISO Design Tool

After you select a tuning algorithm, the pane updates to display the
corresponding options.

Note If the particular automated tuning method you are using does not apply
or fails, try selecting different tuning specifications or switch to a different
tuning algorithm.

Stability of an Effective Plant for Automated Tuning
Knowing the stability of the effective plant in your model may help you
understand which automated tuning methods work for your model. Some of
the automated tuning methods only apply to compensators whose open loops

(L C P=
∧

) have stable effective plants (P
∧

).

An effective plant is the system controlled by the compensator you design
and contains all elements of the open loop in your model other than this
compensator. The following figure shows two examples of effective plants.

� �

���������	
���
�������	�	
���
��	�	��������	���

��

���������	
���	�������
�	
����	�	����������	��
�	���	��������	���
�

�� �

 �

 �

Generic Work Flow
For each method, follow these steps to do your design:

1 Select an automated tuning algorithm from the Design method drop-down
menu.

12-26

Using the SISO Design Task in the Controls & Estimation Tools Manager

2 If you select Optimization-Based Tuning, stop here and see
“Optimization-Based Tuning” on page 12-27.

3 Select a compensator from the drop-down menu.

4 Determine how you want the compensator to perform and set the tuning
specifications.

5 Click Update Compensator and notice the changes in the associated
design and analysis plots.

Note If you encounter a disabled Update Compensator button, try
selecting different tuning specifications (Step 4) or switch to a different
tuning algorithm (Step 1). The disabled button means that the current
method does not work for your model.

Optimization-Based Tuning
Optimization-based tuning creates a subdesign task to assist in the tuning
and optimization of control systems. If you have Simulink Response
Optimization installed, you can use this method to either:

• Directly tune response signals within Simulink models.

• Tune responses of LTI systems using a SISO Design Task.

12-27

12 SISO Design Tool

See “Frequency Domain Response Optimization Example” in the Simulink
Response Optimization documentation for more details.

PID Tuning
PID (proportional-integral-derivative) control is the most popular control
technique used in modern industry. Four PID tuning algorithms are provided
in the SISO Design Tool, including one that supports unstable systems
(Singular frequency based tuning). In most cases, the PID controllers
resulting from PID tuning provide acceptable performance.

12-28

Using the SISO Design Task in the Controls & Estimation Tools Manager

To do a PID design:

1 Select a controller type from the following options:

• P — Proportional-only control (C K p=)

• PI — Proportional-integral control (C K
K
sp
I= +)

• PID — Proportional-integral-derivative control (C K
K
s

K sp
I

d= + +)

• PIDF — PID control with a lowpass filter ()C K
K
s

K s
s
N

p
I d= + +

+ 1

12-29

12 SISO Design Tool

If you choose this controller type, specify the N frequency (bandwidth)
in rad/s.

2 Select an algorithm from the Tuning algorithm list:

• Singular frequency based tuning — This method implements robust
control design techniques to locate stabilizing PID regions in parameter
space. This method supports unstable systems.

• Ziegler-Nichols open loop — Controller settings are based on
a first-order model with a time delay that approximates the plant.
This method uses the Chien-Hrones-Resnick (CHR) setting with 20%
overshoot.

• Ziegler-Nichols closed loop — Controller settings are obtained
from a modified Ziegler-Nichols lookup table, based on the ultimate gain
and frequency of the system.

Ziegler-Nichols closed loop does not apply to first-order or second-order
systems with time delay. If you select Ziegler-Nichols closed loop for
these cases, the tuning algorithm will automatically be switched to
Ziegler-Nichols open loop.

• Internal Model Control (IMC) based tuning — Controller settings
are derived from a full-order IMC controller (note that this is different
from selecting “Internal Model Control (IMC) Tuning” on page 12-35 as
the full-order compensator tuning method).

12-30

Using the SISO Design Task in the Controls & Estimation Tools Manager

3 Set the tuning options available for your selected tuning algorithm type.

• If you chose singular frequency based tuning, select one of these options
from the Performance metric list:

– Integral Absolute Error (IAE)

– Integral Square Error (ISE)

– Integral Time Absolute Error (ITAE)

– Integral Time Square Error (ITSE)

These are typical controller performance criteria based on time response.

12-31

12 SISO Design Tool

• If you chose Ziegler-Nichols open loop, select a tuning preference by
clicking one of these option buttons:

– Setpoint tracking

– Load disturbance rejection

12-32

Using the SISO Design Task in the Controls & Estimation Tools Manager

• If you chose Ziegler-Nichols closed loop, select a tuning formula by
clicking one of these option buttons:

– Ziegler-Nichols

– Tyreus-Luyben

– Astrom-Hagglund

12-33

12 SISO Design Tool

• If you chose Internal Model Control (IMC) based tuning, use the slider
bar to set the Dominant closed-loop time constant.

12-34

Using the SISO Design Task in the Controls & Estimation Tools Manager

4 Click Update Compensator.

Internal Model Control (IMC) Tuning
IMC design generates a full-order feedback controller that guarantees
closed-loop stability when there is no model error. It also contains an
integrator, which guarantees zero steady-state offset for plants without a free
differentiator. You can use this tuning method for both stable and unstable
plants.

12-35

12 SISO Design Tool

To design an IMC controller:

1 Specify a value in the Dominant closed-loop time constant field.
The initial value is set as 5% of the open-loop settling time. In general,
increasing this value slows down the closed system and makes it more
robust.

2 Specify a value in the Desired controller order field using the slider.
After you obtain a full-order feedback controller, you can try to reduce its
order. You may lose performance and closed-loop stability if you reduce
the order.

3 Click Update Compensator.

12-36

Using the SISO Design Task in the Controls & Estimation Tools Manager

LQG Synthesis
LQG tracker design generates a full-order feedback controller that guarantees
closed-loop stability. It also contains an integrator, which guarantees zero
steady-state error for plants without a free differentiator.

To design an LQG controller:

1 Specify your preference for controller response using the Controller
response slider.

• Move the slider to the left for aggressive control response.

This means that large overshoot is more heavily penalized so that
the controller acts more aggressively. If you believe your model is
accurate and that the manipulated variable has a large enough range,
an aggressive controller is more desirable.

12-37

12 SISO Design Tool

• Move the slider to the right for robust control response.

2 Specify your estimation of the level of measurement noise using the
Measurement noise slider.

• Move the slider to the left for small measurement noise.

This means that you expect low noise from the process output
measurement. Because this measurement is used by the Kalman
estimator, process disturbances are picked up more accurately by the
estimated states. In this case, the controller is freer from robustness
considerations.

• Move the slider to the right for large measurement noise. This results in
a controller that is more robust to measurement noise.

3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.

Loop Shaping
Loop shaping generates a stabilizing feedback controller to match as closely
as possible to a desired loop shape. You can specify this loop shape as a
bandwidth or an open loop frequency response. If you have Robust Control
Toolbox installed, you can use loop shaping for SISO systems. For more
information see the section on H-Infinity Loop Shaping in the Robust Control
Toolbox User’s Guide.

To design a controller using loop shaping:

1 Select a tuning preference by clicking one of these option buttons:

• Target bandwidth — Allows you to specify a target loop shape

bandwidth (ωb). This results in a loop shape of your specified bandwidth

over an integrator (
ωb
s

).

• Target loop shape — Allows you to specify the target open loop shape
in one of the following representations: state-space, zero-pole-gain, or
transfer functions.

12-38

Using the SISO Design Task in the Controls & Estimation Tools Manager

2 Set the tuning options available for your selected tuning preference as
follows:

• If you chose Target bandwidth, specify the desired Target open-loop
bandwidth in the editable box.

• If you chose Target loop shape, do the following:

– Enter the desired Target open-loop shape (LTI).

This can be a state-space representation, a zero-pole-gain
representation, or a transfer function.

– Enter the desired Frequency range for loop shaping
[wmin,wmax].

12-39

12 SISO Design Tool

3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.

12-40

SISO Design Task Graphical Tuning Window

SISO Design Task Graphical Tuning Window
This picture shows the Graphical Tuning window and introduces some
terminology.

Graphical Tuning Window

This section describes the Graphical Tuning window features left-to-right and
top-to-bottom, starting with the menu bar and ending with the status pane
at the bottom of the window.

12-41

12 SISO Design Tool

Using the Graphical Tuning Window Menu Bar

In this section...

“Overview of the Graphical Tuning Window Menu Bar” on page 12-42

“File” on page 12-42

“Edit” on page 12-45

“View” on page 12-45

“Analysis” on page 12-47

“Tools” on page 12-48

“Window” on page 12-51

“Help” on page 12-51

Overview of the Graphical Tuning Window Menu Bar
Several of the tasks you can do in the SISO Design Tool can be done from
the menu bar, shown below.

File

Using the File menu, you can:

• Import and export models

• Save and reload sessions

12-42

Using the Graphical Tuning Window Menu Bar

• Set toolbox preferences

• Print and print to figure

• Close the Graphical Tuning Window

The following sections describe the File menu options in turn.

Import
Selecting Import opens the same System Data dialog box that clicking
System Data on the Architecture pane does. See “Importing Models” on
page 12-15.

Export
Selecting Export from the Graphical Tuning window File menu opens the
same SISO Tool Export window that selecting Export from the SISO Design
Task node File menu does. See Export.

Save Session
Selecting Save Session from the Graphical Tuning window File menu opens
the same Save Projects window that selecting Save from the SISO Design
Task node File menu does. See Save.

Load Session
To load a saved SISO Design Tool session, select Load Session from the File
menu. This opens the Load Session menu.

12-43

12 SISO Design Tool

Sessions are saved as MAT-files. Select the session you want to load from the
list, and click Open. See “Save Session” on page 12-43 for information on
saving SISO Design Tool sessions.

Toolbox Preferences
Select Toolbox Preferences from the File menu to open the Control
System Toolbox Preferences menu.

The Control System Toolbox Preferences Window

For a discussion of this window’s features, see "Setting Toolbox Preferences"
online in the Control System Toolbox documentation.

Print
Use Print to send a picture of the Graphical Tuning window to your printer.

Print to Figure
Print to Figure opens a separate figure window containing the design views
in your current Graphical Tuning window.

Close
Use Close to close the Graphical Tuning window.

12-44

Using the Graphical Tuning Window Menu Bar

Edit

Undo and Redo
Selecting Undo and Redo perform the same actions as selecting Undo
and Redo from the SISO Design Task Node Edit menu. See “Edit
Menu Options” on page 12-8.

Tuned Parameters
Selecting Tuned Parameters opens the SISO Tool Preferences dialog box
on the Options page.

SISO Tool Preferences
Selecting the SISO Tool Preferences option opens the same dialog box
that selecting SISO Tool Preferences from the Edit menu on the SISO Design
Task Node. See “Edit Menu Options” on page 12-8.

View

Design Plots Configuration
Select Design Plots Configuration to open the Graphical Tuning pane. See
“Graphical Tuning” on page 12-19.

12-45

12 SISO Design Tool

Closed-Loop Poles
Select Closed-Loop Poles from View to open the Closed-Loop Pole
Viewer.

This window displays all the closed-loop pole values of the selected feedback
loop and the associated damping and frequency values.

Design History
Select Design History from the View menu to open the Design History
window, which displays all the actions you’ve performed during a design
session. You can save the history to an ASCII flat text file by clicking Save
to Text File.

12-46

Using the Graphical Tuning Window Menu Bar

Analysis

Common Response Plots
Each of the top group of items opens an LTI Viewer that is dynamically linked
to your SISO Design Tool. You have the following response plot choices:

• Response to Step Command — The closed-loop step response of your
system

• Rejection of Step Disturbance — The open-loop step response of your
system

• Closed-Loop Bode — The closed-loop Bode diagram for your system

• Compensator Bode — The open-loop Bode diagram for your compensator

• Open-Loop Nyquist — The open-loop Nyquist plot for your system

When you make changes to the design via the Graphical Tuning window, the
Compensator Editor pane, or the Automated Tuning pane, the response plots
in the LTI Viewer automatically change to reflect the new design’s responses.

Other Loop Responses
If you choose Other Loop Responses, the Analysis Plots pane opens. See
“Analysis Plots” on page 12-22.

12-47

12 SISO Design Tool

Tools

Continuous/Discrete Conversions
Selecting Continuous/Discrete Conversions opens the
Continuous/Discrete Conversions window, which you can use to convert
between continuous to discrete designs. You can select the following:

• Conversion method

• Sample time

• Critical frequency (where applicable)

This picture shows the window.

The Continuous/Discrete Conversion Window

Conversion domain. If your current model is continuous-time, the upper
pane of the Continuous/Discrete Conversion window automatically selects
the Discrete time radio button. If your model is in discrete-time, see
“Discrete-time domain” on page 12-49.

12-48

Using the Graphical Tuning Window Menu Bar

To convert to discrete time, you must specify a positive number for the sample
time in the Sample time (sec) field.

You can perform continuous to discrete conversions on any of the components
of your model: the plant (G), the compensator (C), the prefilter (F), or the
sensor (H). Select the method you want to use from the menus next to the
model elements.

Conversion method. The following are the available continuous-to-discrete
conversion methods:

• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

• Matched pole/zero

If you choose Tustin with prewarping, you must specify the critical frequency
in rad/sec.

Discrete-time domain. If you currently have a discrete-time system, the
Continuous/Discrete Conversion window looks like this figure.

12-49

12 SISO Design Tool

You can either change the sample time of the discrete system (resampling) or
do a discrete-to-continuous conversion.

To resample your system, select Discrete time with new sample time and
specify the new sample time in the Sample time (sec) field. The sample time
must be a positive number.

To convert from discrete-time to continuous-time, you have the following
options for the conversion method:

• Zero-order hold

• Tustin

• Tustin with prewarping

• Matched pole/zero

Again, if you choose Tustin with prewarping, you must specify the critical
frequency.

Draw Simulink Diagram

Note You must have a license for Simulink to use this feature. If you do not
have Simulink, you will not see this option under the Tools menu.

Select Draw Simulink Diagram to draw a block diagram of your system
(plant, compensator, prefilter, and sensor). For the DC motor example
described in Getting Started with the Control System Toolbox, this picture
is the result.

12-50

Using the Graphical Tuning Window Menu Bar

Window
The Window menu item lists all window open in MATLAB. The first item
is always the MATLAB Command Window. After that, windows you have
opened are listed in the order in which you invoked them. Any window you
select from the list become the active window.

Help
Help brings you to various places in the Control System Toolbox help system.
This figure shows the menu.

Each topics takes you to brief discussions of basic information about the SISO
Design Tool and the Control System Toolbox:

12-51

12 SISO Design Tool

• SISO Design Tool Help — An overview of the SISO Design Tool

• Control System Toolbox Help — A roadmap for the Control System
Toolbox help

• What’s This? — Activates the "What’s This?" cursor, which appears as a
question mark. Click in various regions of the SISO Design Tool to see brief
descriptions of the tool’s features.

• Importing/Exporting Models — How to import models into the SISO
Design Tool and how to export completed designs

• Tuning Compensators — Basic information about adjusting gains and
adding dynamics to your prefilter (F) and compensator (C)

• Viewing Loop Responses — How to open an LTI Viewer containing loop
responses for your system. Many response types are available.

• Viewing System Data — How to see information about your model

• Storing/Retrieving Designs — How to store and retrieve designed
systems

• Customizing the SISO Tool — How to open the SISO Tool Preferences
editor, which allows you to customize plot displays in the tool

• Demos — A link to the Control System Toolbox demos

• About the Control System Toolbox — The version number of your
Control System Toolbox

12-52

Using the Graphical Tuning Window Toolbar

Using the Graphical Tuning Window Toolbar
The toolbar performs the following operations:

• Add and delete real and complex poles and zeros

• Zoom in and out

• Invoke the SISO Design Tool’s context-sensitive help

This picture shows the toolbar.

Options Available from the Toolbar

You can use the tool tips feature to find out what a particular icon does. Just
place your mouse over the icon in question, and you will see a brief description
of what it does.

Once you’ve selected an icon, your mouse stays in that mode until you press
the icon again.

You can reach all of these options from the right-click menus.

12-53

12 SISO Design Tool

Using the Right-Click Menus in the Graphical Tuning
Window

In this section...

“Overview of the Right-Click Menus” on page 12-54

“Add Pole/Zero” on page 12-55

“Delete Pole/Zero” on page 12-58

“Edit Compensator” on page 12-58

“Gain Target” on page 12-58

“Show” on page 12-58

“Design Requirements” on page 12-59

“Grid” on page 12-71

“Full View” on page 12-71

“Properties” on page 12-72

“Select Compensator” on page 12-73

“Status Pane” on page 12-73

Overview of the Right-Click Menus
The Graphical Tuning window provides right-click menus for all the views
available. These views include the root-locus, open-loop Bode diagrams,
Nichols plot, and the closed-loop Bode diagrams. The menu items in each of
these views are identical. The design requirements, however, differ, depending
on which view you are accessing the menus from.

You can use the right-click menu to design a compensator by adding poles,
zeros, lead, lag, and notch filters. In addition, you can use this menu to
add grids and zoom in on selected regions. Also, you can open each view’s
Property Editor to customize units and other elements of the display.

Note Click items on the menu bar pictured below to get help contents.

12-54

Using the Right-Click Menus in the Graphical Tuning Window

Open-Loop Right-Click Menu

Note that if you have a closed-loop response, the Gain Target menu item is
replaced by “Select Compensator” on page 12-73.

Add Pole/Zero
The Add Pole/Zero menu options give you the ability to add dynamics to
your compensator design, including poles, zeros, lead and lag networks, and
notch filters. The following pole/zero configurations are available:

• Real Pole

• Complex Pole

• Integrator

• Real Zero

• Complex Zero

• Differentiator

• Lead

• Lag

• Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design,
place the x at the desired location on the plot and left-click your mouse.
You will see the root locus design automatically update to include the new
compensator dynamics.

12-55

12 SISO Design Tool

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see "Adding a Notch Filter" in Getting Started
with the Control System Toolbox.

Example: Adding a Complex Pair of Poles
This example shows you how to add a complex pair of poles to the open-loop
Bode diagram. First, type

load ltiexamples
sisotool('bode',sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor
example loaded and the open-loop Bode diagram displayed in the Graphical
Tuning window.

12-56

Using the Right-Click Menus in the Graphical Tuning Window

To add a complex pair of poles:

1 Select Add Pole/Zero->Complex Pole from the right-click menu

2 Place the mouse cursor where you want the pole to be located

3 Left-click to add the pole

Your Graphical Tuning window should look similar to this.

In the case of Bode diagrams, when you place a complex pole, the default
damping value is 1, which means you have a double real pole. To change the
damping, grab the red ‘x’ by left-clicking on it and drag it upward with your
mouse. You will see damping ratio change in the Status pane at the bottom of
the SISO Design Tool.

12-57

12 SISO Design Tool

Delete Pole/Zero
Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:

• You can only delete compensator poles and zeros. Plant (G in the feedback
structure pane) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair
is also removed.

Edit Compensator
Edit Compensator opens the Compensator Editor pane in the SISO
Design Task. You can use this pane to adjust the compensator gain and add or
remove compensator poles and zeros from your compensator (C) or prefilter (F)
design. See “Compensator Editor” on page 12-18 for a discussion of this pane.

Gain Target
This feature is intended for users of Simulink Control Design. It is
nonfunctional in the Control System Toolbox.

Show
Use Show to select/deselect the display of characteristics relevant to which
view you are working with. This figure displays the Show submenu for the
open-loop Bode diagram.

12-58

Using the Right-Click Menus in the Graphical Tuning Window

For this particular view, the options available are magnitude, phase, and
stability margins. Selecting any of these toggles between showing and hiding
the feature. A check next to the feature means that it is currently displayed
on the Bode diagram plots. Although the characteristics are different for
each view in the Graphical Tuning window, they all toggle on and off in the
same manner.

Design Requirements
When designing compensators, it is common to have design specifications that
call for specific settling times, damping ratios, and other characteristics. The
Graphical Tuning window provides tools for design requirements that can
help make the task of meeting design specifications easier. The New Design
Requirement dialog box, which allows you to create design requirements
by creating graphical representations for feasible and nonfeasible regions,
automatically changes to reflect which design requirements are available for
the view in which you are working. Select Design Requirements > New
to open the New Design Requirement dialog box.

Since each view has a different set of design requirements, click the following
links to go to the appropriate descriptions:

• “Design Requirements for the Root Locus” on page 12-59

• “Design Requirements for Open- and Closed-Loop Bode Diagrams” on
page 12-63

• “Design Requirements for Open-Loop Nichols Plots” on page 12-66

• “LTI Viewer for SISO Design Task Design Requirements” on page 12-74

Design Requirements for the Root Locus
For the root locus, you can use the following design requirements:

12-59

12 SISO Design Tool

• “Settling Time” on page 12-60

• “Percent Overshoot” on page 12-60

• “Damping Ratio” on page 12-60

• “Natural Frequency” on page 12-61

• “Region Constraint” on page 12-61

Use the Design requirement type drop-down list to select a design
requirement. In each case, to specify the design requirement, enter the value
in the Design requirement parameters pane. You can select any or all of
them, or have more than one of each.

Settling Time. If you specify a settling time in the continuous-time root locus,
a vertical line appears on the root locus plot at the pole locations associated
with the settling time value provided (using a first-order approximation). This
vertical line is exact for a second order system and is only an approximation
for higher order systems. In the discrete-time case, the design requirement
boundary is a curved line.

Percent Overshoot. Specifying percent overshoot in the continuous-time
root locus causes two rays, starting at the root locus origin, to appear.
These rays are the locus of poles associated with the percent value (using
a second-order approximation). In the discrete-time case, the design
requirement appears as two curves originating at (1,0) and meeting on the
real axis in the left-hand plane.

Note that the percent overshoot (p.o.) design requirement can be expressed
in terms of the damping ratio, as in this equation,

where ζ is the damping ratio.

Damping Ratio. Specifying a damping ratio in the continuous-time root
locus causes two rays, starting at the root locus origin, to appear. These rays
are the locus of poles associated with the damping ratio. In the discrete-time
case, the design requirement boundary appears as curved lines originating at
(1,0) and meeting on the real axis in the left-hand plane.

12-60

Using the Right-Click Menus in the Graphical Tuning Window

Natural Frequency. If you specify a natural frequency lower bound, a
semicircle centered around the root locus origin appears. If you specify a
natural frequency upper bound, the inverse of this semicircle appears. The
radius equals the natural frequency.

Region Constraint. Specifying a region constraint at given locations causes
black lines and a yellow area to appear. The vertices of this free-form
piecewise region are defined by the specified real and imaginary values.

Example: Adding Damping Ratio Design Requirements
This example adds a damping ratio design requirement of 0.707.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(sys_dc)

This opens the SISO Design Tool with the DC motor example imported.

2 From the root locus right-click menu, select Design Requirement > New
to open the New Design Requirement dialog box.

3 To add the design requirement, select Damping Ratio as the design
requirement. Click OK to accept the default damping ratio of 0.707.

The Graphical Tuning window should now look similar to this figure.

12-61

12 SISO Design Tool

Damping Ratio Requirements in the Root Locus

The two rays centered at (0,0) represent the damping ratio boundaries. The
dark edge is the region boundary, and the shaded area outlines the exclusion
region. This figure explains what this means for this design requirement.

12-62

Using the Right-Click Menus in the Graphical Tuning Window

You can, for example, use this design requirement to ensure that the
closed-loop poles, represented by the red squares, have some minimum
damping. Try adjusting the gain until the damping ratio of the closed-loop
poles is 0.7.

Design Requirements for Open- and Closed-Loop Bode
Diagrams
For both the open- and closed-loop Bode diagrams, you have the following
options:

• “Upper Gain Limit” on page 12-63

• “Lower Gain Limit” on page 12-63

• “Gain and Phase Margin” on page 12-63

Specifying any of these design requirements causes lines to appear in the
Bode magnitude curve. To specify an upper or lower gain limit, enter the
frequency range, the magnitude limit, and/or the slope in decibels per decade,
in the appropriate fields of the New design requirement dialog box. You
can have as many gain limit design requirements as you like in your Bode
magnitude plots.

Upper Gain Limit. You can specify one or multiple piecewise linear upper
gain limits over a frequency range, which appear as straight lines on the Bode
magnitude curve. You must select frequency limits, the upper gain limit in
decibels, and the slope in dB/decade.

Lower Gain Limit. You can specify one or multiple lower gain limit in the
same fashion as the upper gain limit.

Gain and Phase Margin. You can specify a lower bound for the gain, the
phase margin, or both. The specified bounds appear in text on the Bode
magnitude plot.

Example: Adding Upper Gain Limits
This example shows you how to add two upper gain limit requirements to
the open-loop Bode diagram.

12-63

12 SISO Design Tool

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool('bode',Gservo)

This opens the SISO Design Tool with the servomechanism model loaded.

2 Use the right-click menu to add a grid.

3 To add an upper gain limit requirement of 0 dB from 10 rad/sec to 100
rad/sec, open the New Design Requirement dialog box and select Upper
gain limit from the pull-down menu. Fill in the dialog box fields as shown
in the following figure.

12-64

Using the Right-Click Menus in the Graphical Tuning Window

Your Graphical Tuning window should now look like this (you may have
to adjust some axis limits).

4 To constrain the roll off, open the New Design Requirement dialog box and
add an upper gain limit from 100 rad/sec to 1000 rad/sec with a slope of -20
db/decade. This figure shows the result.

12-65

12 SISO Design Tool

With these design requirements in place, you can see how much you can
increase the compensator gain and still meet design specifications.

Note that you can change the design requirements by moving them with
your mouse. See “Editing Design Requirements” on page 12-69 for more
information.

Design Requirements for Open-Loop Nichols Plots
For open-loop Nichols plots, you have the following design requirement
options:

• “Phase Margin” on page 12-67

• “Gain Margin” on page 12-67

12-66

Using the Right-Click Menus in the Graphical Tuning Window

• “Closed-Loop Peak Gain” on page 12-67

• “Gain-Phase Design Requirement” on page 12-67

Specifying any of these design requirements causes lines or curves to appear
in the Nichols plot. In each case, to specify the design requirement, enter the
value in the Design requirement parameters pane. You can select any or
all of them, or have more than one of each.

Phase Margin. Specify a minimum phase margin at a given location.
For example, you can require a minimum of 30 degrees at the -180 degree
crossover. The phase margin specified should be a number greater than 0.
The location must be a -180 plus a multiple of 360 degrees. If you enter an
invalid location point, the closest valid location is selected.

Gain Margin. Specify a gain margin at a given location. For example, you
can require a minimum of 20 dB at the -180 degree crossover. The location
must be -180 plus a multiple of 360 degrees. If you enter an invalid location
point, the closest valid location is selected.

Closed-Loop Peak Gain. Specify a peak closed-loop gain at a given location.
The specified dB value can be positive or negative. The design requirement
follows the curves of the Nichols plot grid, so it is recommended that you have
the grid on when using this feature.

Gain-Phase Design Requirement. Specify both a gain and phase design
requirement at a given location. The vertices of this free-form piecewise
region are defined by the specified open-loop phase and open-loop gain values.

Example: Adding a Closed-Loop Peak Gain Design
Requirement
This example shows how to add a closed-loop peak gain design requirement to
the Nichols plot.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool('nichols',Gservo)

This opens the SISO Design Tool with Gservo imported as the plant.

12-67

12 SISO Design Tool

2 Use the right-click menu to add a grid, as this figure shows.

3 To add closed-loop peak gain of 1 dB at -180 degrees, open the New Design
Requirement dialog box and select Closed-Loop Peak Gain from the
pull-down menu. Set the peak gain field to 1 dB.

The figure shows the resulting design requirement.

12-68

Using the Right-Click Menus in the Graphical Tuning Window

As long as the curve is outside of the gray region, the closed-loop gain is
guaranteed to be less than 1 dB. Note that this is equivalent, up to second
order, to specifying the peak overshoot in the time domain. In this case, a 1
dB closed-loop peak gain corresponds to an overshoot of 15%.

Editing Design Requirements
To edit an existing design requirement, left-click on the design requirement
boundary to select it. Two black squares appear on the design requirement
when it is selected. In general, there are two ways to adjust a design
requirement:

• Click on the design requirement boundary and drag it. Generally, this does
not change the shape of the boundary. That is, the adjustment is strictly a
translation of the design requirement.

12-69

12 SISO Design Tool

• Grab a black square and drag it. In this case, you can rotate, expand,
and/or contract the design requirement.

For example, in Bode diagrams you can move an upper gain limit by clicking
on it and moving it anywhere in the plot region. As long as you haven’t
grabbed a black square, the length and slope of the gain limit will not change
as you move the line. On the other hand, you can change the slope of the
upper gain limit by grabbing one of the black squares and rotating the line.
In all cases, the Status pane at the bottom of the Graphical Tuning window
displays the design requirement values as they change.

This figure shows the process of editing an upper gain limit in the open-loop
Bode diagram.

12-70

Using the Right-Click Menus in the Graphical Tuning Window

An alternative way to adjust a design requirement is to select Design
Requirements->Edit from the right-click menu. The Edit Design
Requirement window opens.

To adjust a design requirement, select the boundary by clicking on it and
change the values in the fields of the Design requirement parameters pane. If
you have additional design requirement in, for example, the Bode diagram,
you can edit them directly from this window by selecting Open-Loop Bode
from the Editor menu.

Deleting Design Requirements
To delete a design requirement, place your cursor directly over the design
requirement yellow region. Right-click to open a menu containing Edit
and Delete. Select Delete from the menu list; this eliminates the design
requirement. You can also delete design requirements by left-clicking on a
design requirement boundary and then pressing the BackSpace or Delete
key on your keyboard.

Finally, you can delete design requirements by selecting Undo Add Design
Requirement from the Edit menu, or pressing Ctrl+Z if adding design
requirements was the last action you took.

Grid
Grid adds a grid to the selected plot.

Full View
Selecting Full View causes the plot to scale limits so that the entire curve
is visible.

12-71

12 SISO Design Tool

Properties
Properties opens the Property Editor, which is a GUI for customizing
root locus, Bode diagrams, and Nichols plots inside the Graphical Tuning
window. The Property Editor automatically reconfigures as you select among
the different plots open.

This picture shows the open window for the root locus.

You can use this window to change titles and axis labels, reset axes limits,
add grid lines, and change the aspect ratio of the plot. Note that you can
also activate this menu by double-clicking anywhere in the root locus away
from the curve.

The are only three panes in the Property Editor: Labels, Limits, and Options.
The configuration of each page differs, depending on whether you’re working
with the root-locus, Bode diagrams, or the open-loop Nichols plot. Click the
Help button on the Property Editor you have open to view information
specific to that editor, or click on the links below:

• Root locus

• Bode diagram

• Nichols plot

12-72

Using the Right-Click Menus in the Graphical Tuning Window

Select Compensator
This option allows you to select which compensator to edit for closed-loop
Bode response.

Status Pane
The Status pane is located at the bottom of the Graphical Tuning window. It
displays the most recent action you have performed, occasionally provides
advice on how to use the window, and tracks key parameters when moving
objects in the design views.

12-73

12 SISO Design Tool

LTI Viewer for SISO Design Task Design Requirements

In this section...

“Overview of LTI Viewer Design Requirements” on page 12-74

“Available Design Requirements in the LTI Viewer” on page 12-74

“Example: Time Domain Requirement” on page 12-75

Overview of LTI Viewer Design Requirements
You can use the LTI Viewer for SISO Design Tasks to specify both time and
frequency domain requirements in analysis plots. Adding and editing design
requirements is similar to those illustrated in the Graphical Tuning window.

Available Design Requirements in the LTI Viewer
The design requirements for Bode, Root Locus, and Nichols plots can be
applied to both graphical tuning windows and the LTI viewer. See “Design
Requirements” on page 12-59 for information on graphical tuning design
requirements.

You can also use the following design requirements for both step and impulse
response plots:

• Upper time response bounds — Creates an upper amplitude bound for
a specified time duration.

• Lower time response bounds — Creates a lower amplitude bound for
a specified time duration.

If you are using a step response plot, you can also use the following design
requirement:

• Step response bounds — Creates a group of upper and lower time
response bounds, in the shape of a step response envelope, to encompass
your specified design requirement parameters.

12-74

LTI Viewer for SISO Design Task Design Requirements

Example: Time Domain Requirement
This example shows you how to create a lower bound time response design
requirement.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(Gservo)

2 From the Analysis Plot pane, select step response. See “Analysis Plots” on
page 12-22 if you are unfamiliar with this task.

3 Select Design Requirements->New from the LTI Viewer right-click menu.

4 Select Lower time response bound from the Design requirements menu.

5 Set Time from 0.1 to 0.5 s.

6 Set Amplitude from 0 to 0.8. Your New Design Requirement window should
look like this.

7 Click OK. This adds the design requirement. Your step response should
look like this.

12-75

12 SISO Design Tool

12-76

13

LTI Viewer

Basic LTI Viewer Tasks (p. 13-2) A brief overview of the basic
functionality of the LTI Viewer

Using the Right-Click Menu in the
LTI Viewer (p. 13-4)

How to use the right-click menu, a
quick way to navigate the LTI Viewer

Importing, Exporting, and Deleting
Models in the LTI Viewer (p. 13-12)

How to move models in and out of
the LTI Viewer

Selecting Response Types (p. 13-16) How to add or change existing views
and modify line styles

Analyzing MIMO Models (p. 13-20) Different ways of viewing
multiple-input, multiple output
LTI models

Customizing the LTI Viewer
(p. 13-25)

Specifying new defaults for units,
grids, axes, and so on

13 LTI Viewer

Basic LTI Viewer Tasks
LTI Viewer is a graphical user interface (GUI) that simplifies the analysis of
linear, time-invariant systems. You use the LTI Viewer to view and compare
the response plots of SISO and MIMO systems, or of several linear models
at the same time. You can generate time and frequency response plots to
inspect key response parameters, such as rise time, maximum overshoot,
and stability margins.

The easiest way to work with the LTI Viewer is to use the right-click menus.
For example, type

load ltiexamples
ltiview(sys_dc)

at the MATLAB prompt. The default plot is a step response.

13-2

Basic LTI Viewer Tasks

The LTI Viewer can display up to seven different plot types simultaneously,
including step, impulse, Bode (magnitude and phase or magnitude only),
Nyquist, Nichols, sigma, pole/zero, and I/O pole/zero.

See ltiview for help on the function that opens an LTI Viewer. For examples
of how to use the LTI Viewer, see Analyzing Models in Getting Started with
the Control System Toolbox.

13-3

13 LTI Viewer

Using the Right-Click Menu in the LTI Viewer

In this section...

“Overview of the Right-Click Menu” on page 13-4

“Setting Characteristics of Response Plots” on page 13-4

“Adding Design Requirements” on page 13-9

Overview of the Right-Click Menu
The quickest way to manipulate views in the LTI Viewer is use the right-click
menu. You can access several LTI Viewer controls and options, including:

• Plot Type — Changes the plot type

• Systems — Selects or deselects any of the models loaded in the LTI Viewer

• Characteristics — Displays key response characteristics and parameters

• Grid — Adds grids to your plot

• Properties — Opens the Property Editor, where you can customize
plot attributes

• Design Requirements — Opens the New Design Requirement window
for adding step response design requirements to your plot (available only
for LTI Viewers linked to the Graphical Tuning window of the SISO Design
Tool)

In addition to right-click menus, all response plots include data markers.
These allow you to scan the plot data, identify key data, and determine the
source system for a given plot.

Setting Characteristics of Response Plots
The Characteristics menu changes for each plot response type.
Characteristics refers to response plot information, such as peak response, or,
in some cases, rise time and settling time.

The next sections describe the menu items for each of the eight plot types.

13-4

Using the Right-Click Menu in the LTI Viewer

Step Response
Step plots the model’s response to a step input.

You can display the following information in the step response:

• Peak Response — The largest deviation from the steady-state value of
the step response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

• Rise Time — The time require for the step response to rise from 10% to
90% of its final value

• Steady-State — The final value for the step response

Note You can change the definitions of settling time and rise time using
the Characteristics pane of the Control System Toolbox editor, the LTI
Viewer editor, or the Property editor.

Impulse Response
Impulse Response plots the model’s response to an impulse.

The LTI Viewer can display the following information in the impulse response:

13-5

13 LTI Viewer

• Peak Response — The maximum positive deviation from the steady-state
value of the impulse response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The LTI Viewer can display the following information in the Bode diagram:

• Peak Response — The maximum value of the Bode magnitude plot over
the specified region

• Stability Margins (Minimum Crossing) — The minimum phase and
gain margins. The gain margin is defined to the gain (in dB) when the
phase first crosses -180°. The phase margin is the distance, in degrees, of
the phase from -180° when the gain magnitude is 0 dB.

• Stability Margins (All Crossings) — Display all stability margins

Bode Magnitude

Bode Magnitude plots the Bode magnitude diagram for the model.

The LTI Viewer can display the following information in the Bode magnitude
diagram:

13-6

Using the Right-Click Menu in the LTI Viewer

• Peak Response, which is the maximum value of the Bode magnitude in
decibels (dB), over the specified range of the diagram.

• Stability (Minimum Crossing) — The minimum gain margins. The gain
margin is defined to the gain (in dB) when the phase first crosses -180°.

• Stability (All Crossings) — Display all gain stability margins

Nyquist Diagrams

Nyquist plots the Nyquist diagram for the model.

The LTI Viewer can display the following types of information in the Nyquist
diagram:

• Peak Response — The maximum value of the Nyquist diagram over the
specified region

• Stability (Minimum Crossing) — The minimum gain and phase margins
for the Nyquist diagram. The gain margin is the distance from the origin to
the phase crossover of the Nyquist curve. The phase crossover is where the
curve meets the real axis. The phase margin is the angle subtended by the
real axis and the gain crossover on the circle of radius 1.

• Stability (All Crossings) — Display all gain stability margins

Nichols Charts
Nichols plots the Nichols Chart for the model.

13-7

13 LTI Viewer

The LTI Viewer can display the following types of information in the Nichols
chart:

• Peak Response — The maximum value of the Nichols chart in the plotted
region.

• Stability (Minimum Crossing) — The minimum gain and phase margins
for the Nichols chart.

• Stability (All Crossings) — Display all gain stability margins

Singular Values

Singular Values plots the singular values for the model.

The LTI Viewer can display the Peak Response, which is the largest
magnitude of the Singular Values curve over the plotted region.

Pole/Zero and I/O Pole/Zero
Pole/Zero plots the poles and zeros of the model with ‘x’ for poles and ‘o’ for
zeros. I/O Pole/Zero plots the poles and zeros of I/O pairs.

There are no Characteristics available for pole-zero plots.

13-8

Using the Right-Click Menu in the LTI Viewer

Adding Design Requirements
If you open an LTI Viewer for the Graphical Tuning window, you have plots
linked to your compensator design. In this environment, the LTI Viewer
provides access to design requirements, a set of graphical tools for creating
constraints in your design plots.

In addition to all the design requirements available in the Graphical Tuning
window, the LTI Viewer has step response design requirements, which are
described below. For a discussion of all others, see “Design Requirements” on
page 12-59.

Note Design Requirements are not available from an LTI Viewer that is not
linked to the Graphical Tuning window.

Choosing Step Response Specifications
To specify step response characteristics select Design Requirements > New
in the right-click menu. This will display the New Design Requirements
editor. Select step response bounds from the Design requirement type
pull down menu to display the step response specifications as shown below.

13-9

13 LTI Viewer

The top three options specify the details of the step input:

• Initial value: input level before the step occurs. This option is grayed out
because LTI systems always have intial value equal to 0.

• Step time: time at which the step takes place. This option is grayed out
since LTI systems always have an initial time equal to 0.

• Final value: input level after the step occurs

The remaining options specify the characteristics of the response signal. Each
of the step response characteristics is described in the figure below.

13-10

Using the Right-Click Menu in the LTI Viewer

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined as the
final step value plus or minus the specified percentage of the final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can undershoot
the initial value. This amount is specified as a percentage of the step’s
range. The step’s range is the difference between the final and initial
values.

Enter values for the response specifications in the Design Requirements
editor, based on the requirements of your model, and then click OK. The
constraint edges will now reflect the constraints specified.

13-11

13 LTI Viewer

Importing, Exporting, and Deleting Models in the LTI
Viewer

In this section...

“Importing Models” on page 13-12

“Exporting Models” on page 13-13

“Deleting Models” on page 13-14

Importing Models
To import models into the LTI Viewer, select Import under the Edit menu.
This opens the LTI Browser, shown below.

Use the LTI Browser to import LTI models into or from the LTI Viewer
workspace.

To import a model:

• Click on the desired model in the LTI Browser List. To perform multiple
selections:

- Hold the Control key and click on nonadjacent models.

- Hold the Shift key while clicking to select multiple adjacent models.

13-12

Importing, Exporting, and Deleting Models in the LTI Viewer

• Click the OK or Apply Button

Note that the LTI Browser lists only the LTI models in the MATLAB
workspace.

Alternatively, you can directly import a model into the LTI Viewer using the
ltiview function, as in

ltiview({'step', 'bode'}, modelname)

See the ltiview function for more information.

Exporting Models
Use Export in the File menu to open the LTI Viewer Export window,
shown below.

The LTI Viewer Export window lists all the models with responses currently
displayed in your LTI Viewer. You can export models back to the MATLAB
workspace or to disk. In the latter case, the Control System Toolbox saves
the files as MAT-files.

To export single or multiple models, follow the steps described in the importing
models section above. If you choose Export to Disk, this window opens.

13-13

13 LTI Viewer

Choose a name for your model(s) and click Save. Your models are stored
in a MAT-file.

Deleting Models
Select Edit->Delete to open the LTI Viewer Delete window.

13-14

Importing, Exporting, and Deleting Models in the LTI Viewer

To delete a model:

• Click on the desired model in the Model list. To perform multiple selections:

a Click and drag over several variables in the list.

b Hold the Control key and click on individual variables.

c Hold the Shift key while clicking, to select a range.

Click the Delete button.

13-15

13 LTI Viewer

Selecting Response Types

In this section...

“Methods for Selecting Response Types” on page 13-16

“Right Click Menu: Plot Type” on page 13-16

“Plot Configurations Window” on page 13-16

“Line Styles Editor” on page 13-18

Methods for Selecting Response Types
There are two methods for selecting response plots in the LTI Viewer:

• Selecting Plot Type from the right-click menus

• Opening the Plot Configurations window

Right Click Menu: Plot Type
If you have a plot open in the LTI Viewer, you can switch to any other response
plot available by selecting Plot Type from the right click menu.

To change the response plot, select the new plot type from the Plot Type
submenu. The LTI Viewer automatically displays the new response plot.

Plot Configurations Window
The Plot Type feature of the right-click menu works on existing plots, but
you can also add plots to an LTI Viewer by using the Plot Configurations
window. By default, the LTI Viewer opens with a closed-loop step response. To
reconfigure an open viewer, select Plot Configuration in the Edit menu.

13-16

Selecting Response Types

Use the radio buttons to select the number of plots you want displayed in your
LTI Viewer. For each plot, select a response type from the menus located on
the right-hand side of the window.

It’s possible to configure a single LTI Viewer to contain up to six response plots.

13-17

13 LTI Viewer

Available response plots include: step, impulse, Bode (magnitude and phase,
or magnitude only), Nyquist, Nichols, sigma, pole/zero maps, and I/O pole/zero
maps.

Line Styles Editor
Select Edit-> Line Styles to open the Line Styles editor.

The Line Styles editor is particularly useful when you have multiple systems
imported. You can use it change line colors, add and rearrange markers, and
alter line styes (solid, dashed, and so on).

You can use the Linestyle Preferences window to customize the appearance
of the response plots by specifying:

• The line property used to distinguish different systems, inputs, or outputs

• The order in which these line properties are applied

Each LTI Viewer has its own Linestyle Preferences window.

13-18

Selecting Response Types

Setting Preferences
You can use the "Distinguish by" matrix (the top half of the window) to specify
the line property that will vary throughout the response plots. You can group
multiple plot curves by systems, inputs, outputs, or channels (individual
input/output relationships). Note that the Line Styles editor uses radio
buttons, which means that you can only assign one property setting for each
grouping (system, input, etc.).

Ordering Properties
The Order field allows you to change the default property order used when
applying the different line properties. You can reorder the colors, markers,
and linestyles (e.g., solid or dashed).

To change any of the property orders, click the up or down arrow button to
the left of the associated property list to move the selected property up or
down in the list.

13-19

13 LTI Viewer

Analyzing MIMO Models

In this section...

“Overview of Analyzing MIMO Models” on page 13-20

“Array Selector” on page 13-21

“I/O Grouping for MIMO Models” on page 13-23

“Selecting I/O Pairs” on page 13-24

Overview of Analyzing MIMO Models
If you import a MIMO system, or an LTI array containing multiple linear
models, you can use special features of the right-click menu to group the
response plots by input/output (I/O) pairs or select individual plots for display.
For example, if you randomly generate a 3-input, 3-output MIMO system,

sys_mimo=rss(3,3,3);

and open an LTI Viewer,

ltiview(sys_mimo);

the default is an unwrapped set of 9 plots, one from each input to each output.

13-20

Analyzing MIMO Models

Array Selector
If you import an LTI array into your LTI Viewer, Array Selector appears
as an option in the right-click menu. Selecting this option opens the Model
Selector for LTI Arrays, shown below.

13-21

13 LTI Viewer

You can use this window to include or exclude models within the LTI array
using various criteria. The following subsections discuss the features in turn.

Arrays
Select which LTI array for applying model selection options by using the
Arrays pull-down list.

Selection Criteria
There are two selection criteria. The default, Index into Dimensions, allows
you to include or exclude specified indices of the LTI Array. Select systems
from the Selection Criteria Setup and specify whether to show or hide the
systems using the pull-down menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options
causes the Model Selector to reconfigure. The reconfigured window is shown
below.

Use this option to select systems for inclusion or exclusion in your LTI Viewer
based on their time response characteristics. The panel directly above the
buttons describes how to set the inclusion or exclusion criteria based on
which selection criteria you select from the reconfigured Selection Criteria
Setup panel.

13-22

Analyzing MIMO Models

I/O Grouping for MIMO Models
You can group this by inputs, by outputs, or both by selecting I/O Grouping
and then Inputs, Outputs, or All, respectively, from the right-click menu.

For example, if you select Outputs, the LTI Viewer reconfigures into 3 plots,
one for each input.

Selecting None returns to the default configuration, where all I/O pairs are
displayed individually.

13-23

13 LTI Viewer

Selecting I/O Pairs
Another way to organize MIMO system information is to choose I/O Selector
from the right-click menu, which opens the I/O Selector window.

This window automatically configures to the number of I/O pairs in your
MIMO system. You can select:

• Any individual plot (only one at a time) by clicking on a button

• Any row or column by clicking on Y(*) or U(*)

• All of the plots by clicking [all]

Using these options, you can inspect individual I/O pairs, or look at particular
I/O channels in detail.

13-24

Customizing the LTI Viewer

Customizing the LTI Viewer

In this section...

“Overview of Customizing the LTI Viewer” on page 13-25

“LTI Viewer Preferences Editor” on page 13-25

Overview of Customizing the LTI Viewer
The LTI Viewer has a tool preferences editor, which allows you to set default
characteristics for specific instances of LTI Viewers. If you open a new
instance of either, each defaults to the characteristics specified in the Toolbox
Preferences editor.

LTI Viewer Preferences Editor
Select Viewer Preferences in the Edit menu of the LTI Viewer to open
the LTI Viewer Preferences editor. This figure shows the editor open to
its first pane.

The LTI Viewer Preferences editor contains four panes:

• Units--Convert between various units, including rad/sec and Hertz

13-25

13 LTI Viewer

• Style--Customize grids, fonts, and colors

• Characteristics--Specify response plot characteristics, such as settling time
tolerance

• Parameters--Set time and frequency ranges, stop times, and time step size

If you want to customize the settings for all instances of LTI Viewers, see the
Toolbox Preferences editor.

13-26

Index

IndexA
addition of LTI models 2-12

scalar 2-13
adjoint.. See pertransposition
append 2-17 to 2-18 4-31
array dimensions 4-8
array selector for LTI Viewer 13-21
arrays. See LTI arrays 4-2

B
balancing realizations 3-7
building LTI arrays 4-13

C
canonical realizations 3-7
cell array 1-15 1-18
classical control 10-2 10-19
closed loop.. See feedback
concatenation, model 1-14

horizontal 2-18
LTI arrays 4-16
state-space model order, effects on 2-10
vertical 2-18

conditioning, state-space models 11-4
connection

feedback 10-11
parallel 2-13 10-53
series 2-14 10-14

constructor functions, LTI objects 1-7
continuous-time 3-2
conversion, model

automatic 1-47
between model types 1-46 2-3
continuous to discrete (c2d) 2-21
discrete to continuous (d2c) 1-42 2-21

with negative real poles 2-22
FRD model, to 1-46
resampling 2-31

SS model, to 1-46
state-space, to 1-48
TF model, to 1-46
ZPK model, to 1-46

covariance
error 10-56 10-60

customizing plots 8-2
customizing subplots 8-11

D
d2d 2-31
delays

discrete-time models 1-71
discretization 2-28
I/O 1-33 to 1-34
input 1-32 1-50
output 1-32 1-50
Pade approximation 1-65

deletion
parts of LTI arrays 4-26
parts of LTI models 2-10

denominator
property 1-33
specification 1-12 1-15 1-27
value 1-29

descriptor systems.. See state-space models,
descriptor

design
classical 10-2 10-19
Kalman estimator 10-35 10-49 10-57
LQG 10-30
regulators 10-30
robustness 10-27
root locus 10-8 10-23

desired responses
step responses 13-9

digital filter
filt 1-27
specification 1-27

Index-1

Index

dimensions
array 4-8
I/O 4-8

discrete-time models 1-24 3-2
control design 10-19
Kalman estimator 10-50
resampling 2-31
See also LTI models

discretization 1-42 2-21 10-20
delay systems 2-28
first-order hold 2-23
matched poles/zeros 2-28
Tustin method 2-27
zero-order hold 2-21

dual.. See transposition

E
error covariance 10-56 10-60
extraction

LTI arrays, in 4-24
LTI models, in 2-5

F
feedback 10-11
feedthrough gain 1-34
filt 1-27
filtering.. See Kalman estimator
first-order hold (FOH) 2-23

with delays 2-28
FRD (frequency response data) objects 1-7 1-22

conversion to 1-46
frequencies

indexing by 2-8
referencing by 2-8

uses 1-7
frequency response 1-22

G
gain 1-16

feedthrough 1-34
property

LTI properties gain 1-34
gain margins 10-27
get 1-37
Graphical design window 12-2
Graphical Tuning Preferences Editor 7-8
group. See I/O groups 2-9

I
I/O

concatenation 2-17
delays 1-33 to 1-34
dimensions 3-2

LTI arrays 4-8
groups 1-32

referencing models by group name 2-9
names 1-32 1-43

conflicts, naming 2-4
referencing models by 2-9

relation 2-5
indexing into LTI arrays 4-22

single index access 4-23
inheritance 2-3
input 1-3

delays 1-32 1-50
groups 1-32
names 1-32
number of inputs 3-2

InputDelay. . See delays
InputGroup 1-32 2-4

conflicts, naming 2-4
See also I/O groups

InputName 1-40 1-42 2-4
conflicts, naming 2-4
See also I/O names

inversion

Index-2

Index

model 2-15
ioDelayMatrix. . See delay

K
Kalman

filtering 10-49
Kalman estimator

continuous 10-35
discrete 10-50
time-varying 10-57

L
LQG (linear quadratic-gaussian) method

continuous LQ regulator 10-35
cost function 10-35
design 10-30 10-45
LQ-optimal gain 10-35
regulator 10-30

LTI (linear time-invariant) 1-2
LTI arrays 4-2

accessing models 4-23
analysis functions 4-32
array dimensions 4-8
building 4-16
building LTI arrays 4-13
building with rss 4-21
building with tf, zpk, ss, and frd 4-18
concatenation 4-16
conversion, model.. See conversion
deleting parts of 4-26
dimensions, size, and shape 4-8
extracting subsystems 4-24
indexing into 4-22 to 4-23
interconnection functions 4-27
model dimensions 4-8
operations on 4-27

dimension requirements 4-29
special cases 4-30

reassigning parts of 4-25
size 4-8
stack 4-16

LTI models
addition 2-12

scalar 2-13
building 2-17
characteristics 3-2
concatenation

effects on model order 2-10
horizontal 2-18
vertical 2-18

continuous 3-2
conversion 1-46 2-3 2-22

continuous/discrete 2-21
See also conversion, model

creating 1-12
discrete 1-24 3-2
discretization, matched poles/zeros 2-28
empty 1-16 3-2
functions, analysis 3-4
I/O group or channel name, referencing

by 2-9
interconnection functions 2-17
inversion 2-15
model data, accessing 1-28
modifying 2-5
multiplication 2-14
operations 1-9 2-1

precedence rules 2-3
See also operations

proper transfer function 3-2
resizing 2-10
subsystem, modifying 2-10
subtraction 2-13
type 3-2

LTI objects 1-31 1-38
constructing 1-7
methods 1-8
properties.. See LTI properties

Index-3

Index

See also LTI models
LTI properties 1-8 1-31 1-40

accessing property values (get) 1-37 to 1-38
displaying properties 1-37
generic properties 1-31
I/O groups.. See I/O, groups
I/O names.. See I/O, names
inheritance 2-3
model-specific properties 1-33
online help (ltiprops) 1-31
property names 1-31 1-36
property values 1-31 1-36

setting 1-35
sample time 2-3
variable property 2-4

LTI Viewer
array selector 13-21
configuring plots 13-16
customization 13-25
I/O grouping 13-23
importing/exporting models 13-12
MIMO models 13-20
overview 13-2
right-click menu 13-4
selecting I/O pairs 13-24
selecting response types 13-16
SISO Design Task 12-2

LTI Viewer Preferences Editor 7-3

M
map, I/O 2-5
margins, gain and phase 10-27
methods 1-8
MIMO 1-2 2-18
model building 2-17

feedback connection 10-11
parallel connection 2-13 10-53
series connection 2-14 10-14

model dynamics, function list 3-4

modeling.. See model building
multiplication 2-14

scalar 2-15

N
Notes 1-33
numerator

property 1-33
specification 1-12 1-15 1-27
value 1-29

numerical stability 11-6

O
object-oriented programming 1-8
objects.. See LTI objects
operations on LTI models

addition 2-12
append 2-18
arithmetic 2-12
concatenation 1-14 2-10 2-18
extracting a subsystem 1-9
inversion 2-15
multiplication 2-14
overloaded 1-8
pertransposition 2-16
precedence 2-3
resizing 2-10
subsystem, extraction 2-5
subtraction 2-13
transposition 2-15

output 1-3
delays 1-32 1-50
groups 1-32
names 1-32
number of outputs 3-2

OutputDelay. . See delays
OutputGroup 1-32

group names, conflicts 2-4

Index-4

Index

See also I/O, groups 2-4
OutputName 1-40

conflicts, naming 2-4
See also I/O, names 1-40

P
Pade approximation (pade) 1-65
parallel connection 2-13 10-53
pertransposition 2-16
phase margins 10-27
plot customization 8-2
poles 1-16

property 1-34
precedence rules 1-8 2-3
proper transfer function 3-2
properties

sample time 2-3
variable 2-4

properties.. See LTI properties
Property Editor 8-4

R
realization

state coordinate transformation 3-7
realizations 3-7

balanced 3-7
canonical 3-7

regulation 10-30
resampling 2-31
response, I/O 2-5
robustness 10-27
root locus 10-23

design 10-8 10-23
See also Root Locus Design GUI

rss
building an LTI array with 4-21

S
sample time 1-24 1-32 1-40 2-3

accessing 1-28
resampling 2-31
setting 1-42
unspecified 1-32

scaling 11-15
series connection 2-14 10-14
set 1-35
SISO 1-2 3-2
SISO Design Task in the Control and Estimation

Tools Manager 12-2
SISO Design Tool 12-2

customizing plots 8-12
root locus right-click menu 12-54

ss 1-19
SS models 2-16
SS objects.. See state-space models
stability

numerical 11-6
stack 4-16
state 1-19

matrix 1-34
names 1-34
transformation 3-7
vector 1-3

state-space models 1-3 1-7 11-8
balancing 3-7
conditioning 11-4
conversion to 1-46

See also conversion 1-46
descriptor 1-21 1-28
matrices 1-19
model data 1-19
quick data retrieval 1-28
realizations 3-7
scaling 11-15
specification 1-19
ss 1-19
transfer functions of 1-47

Index-5

Index

step responses
specifications 13-9

subplot customization 8-11
subsystem 1-9 2-5
subsystem operations on LTI models

subsystem, modifying 2-10
subtraction 2-13

T
Td. . See delays
tf 1-12
TF objects.. See transfer functions
tfdata

output, form of 1-29
time delays.. See delays
time-varying Kalman filter 10-57
Toolbox Preferences Editor 6-2
transfer functions 1-2 1-7 11-9

constructing with rational expressions 1-13
conversion to 1-46
denominator 1-12
discrete-time 1-24 1-27
DSP convention 1-27
filt 1-27
MIMO 1-14 2-18
numerator 1-12
quick data retrieval 1-28
specification 1-12
static gain 1-16
tf 1-12
TF object, display for 1-13

variable property 1-33 2-4
transposition 2-15
triangle approximation 2-23
Ts. See sample time 1-40
Tustin approximation 2-27

with frequency prewarping 2-28

U
Userdata 1-33

V
variable property 2-4

Z
zero-order hold (ZOH) 2-21 10-20

with delays 2-28
zero-pole-gain (ZPK) models 1-2 1-7 11-14

conversion to 1-46
MIMO 1-18 2-18
quick data retrieval 1-28
specification 1-16
zpk 1-17

zeros 1-16
property 1-34

zpk 1-17
ZPK objects.. See zero-pole-gain (ZPK) models
zpkdata

output, form of 1-29

Index-6

	toc
	LTI Models
	Linear, Time-Invariant Models
	Supported Model Types
	LTI Model Formats
	Examples of Creating LTI Models
	Example of Creating Transfer Function Models
	Example of Creating Zero-Pole-Gain Models
	Example of Creating State-Space Models
	Example of Creating Frequency Response Data Models

	Using LTI Models
	Other Uses of FRD Models

	LTI Objects
	Creating an LTI Object: An Example
	LTI Properties and Methods

	Precedence Rules
	Viewing LTI Systems as Matrices
	LTI Command Summary

	Creating LTI Models
	Transfer Function Models
	SISO Transfer Function Models
	MIMO Transfer Function Models
	Pure Gains

	Zero-Pole-Gain Models
	SISO Zero-Pole-Gain Models
	MIMO Zero-Pole-Gain Models

	State-Space Models
	Descriptor State-Space Models
	Frequency Response Data (FRD) Models
	Creating Discrete-Time Models
	Discrete-Time TF and ZPK Models
	Discrete Transfer Functions in DSP Format

	Data Retrieval

	LTI Properties
	What are LTI Properties?
	Generic LTI Properties
	Model-Specific Properties
	TF-Specific Properties
	ZPK-Specific Properties
	SS-Specific Properties
	FRD-Specific Properties

	Setting LTI Properties
	Accessing Property Values Using get
	Direct Property Referencing Using Dot Notation
	Additional Insight into LTI Properties
	Sample Time
	Input Names and Output Names
	Input Groups and Output Groups

	Model Conversion
	Available Model Formats
	Explicit Conversion
	Automatic Conversion
	Caution About Model Conversions

	Time Delays
	Supported Types of Delays
	Available Properties for Modeling Delays
	Input and Output Delays
	Specifying Input and Output Delays in State-Space Models

	Specifying I/O Delays in MIMO Models
	Using the ioDelay Property to Specify Delays

	Internal Delays
	Why Internal Delays Are Necessary
	Building Models with Internal Delays

	Analyzing Systems With Delays
	Considerations to Keep in Mind when Analyzing Systems with Inter

	Eliminating Time Delays: Padé Approximation
	Sensitivity Analysis
	Specifying Delays in Discrete-Time Models
	Example: Discrete-Time Model with Delayed Feedback

	Discretization
	Functions That Support Internal Time Delays
	Inside Time Delay Models

	Simulink Block for LTI Systems
	References

	Operations on LTI Models
	Overview
	Precedence and Property Inheritance
	Extracting and Modifying Subsystems
	What is a Subsystem?
	Basic Subsystem Concepts
	Rules for Modifying LTI Model Subsystems

	Referencing FRD Models Through Frequencies
	Referencing Channels by Name
	Resizing LTI Systems

	Arithmetic Operations on LTI Models
	Supported Arithmetic Operations
	Addition and Subtraction
	Multiplication
	Inversion and Related Operations
	Transposition
	Pertransposition

	Model Interconnection Functions
	Supported Interconnection Functions
	Concatenation of LTI Models
	Feedback and Other Interconnection Functions

	Continuous/Discrete Conversions of LTI Models
	Supported Conversion Functions and Methods
	Zero-Order Hold
	First-Order Hold
	Impulse Invariance
	Tustin Approximation
	Tustin with Frequency Prewarping
	Matched Poles and Zeros
	Discretization of Systems with Delays

	Resampling of Discrete-Time Models
	References

	Model Analysis Tools
	General Model Characteristics
	Model Dynamics
	State-Space Realizations

	Arrays of LTI Models
	Concept of an LTI Array
	What is an LTI Array?
	When to Use an LTI Array
	When to Collect a Set of Models in an LTI Array
	Restrictions for LTI Models Collected in an Array
	Where to Find Information on LTI Arrays
	Visualizing LTI Arrays
	Higher Dimensional Arrays of LTI Models

	Dimensions, Size, and Shape of an LTI Array
	I/O and Array Dimensions of LTI Arrays
	Accessing the Dimensions of an LTI Array Using size and ndims
	Using reshape to Rearrange an LTI Array

	Building LTI Arrays
	Ways to Build LTI Arrays
	Building LTI Arrays Using for Loops
	Building LTI Arrays Using the stack Function
	Accessing LTI Arrays of Variable Order

	Building LTI Arrays Using tf, zpk, ss, and frd
	Specifying Arrays of TF models Using tf
	Specifying Arrays of ZPK Models Using zpk
	Specifying Arrays of SS Models Using ss
	The Size of LTI Array Data for SS Models
	Specifying Arrays of FRD Models Using frd

	Generating Random LTI Arrays Using rss

	Indexing into LTI Arrays
	When to Index into LTI Arrays
	Organization of Indices
	Note on Indexing into LTI Arrays of FRD Models
	Accessing Particular Models in an LTI Array
	Single Index Referencing of Array Dimensions

	Extracting LTI Arrays of Subsystems
	Reassigning Parts of an LTI Array
	Deleting Parts of an LTI Array

	Operations on LTI Arrays
	Supported Operations on LTI Arrays
	Example: Addition of Two LTI Arrays
	Dimension Requirements
	Special Cases for Operations on LTI Arrays
	Examples of Operations on LTI Arrays with Single LTI Models
	Examples: Arithmetic Operations on LTI Arrays and SISO Models

	Other Operations on LTI Arrays

	Customization Preliminaries
	Terminology
	The Property and Preferences Hierarchy

	Setting Toolbox Preferences
	Toolbox Preferences Editor
	Overview of the Toolbox Preferences Editor
	Opening the Toolbox Preferences Editor

	Units Pane
	Style Pane
	Options Pane
	SISO Tool Pane

	Setting Tool Preferences
	Introduction
	LTI Viewer Preferences Editor
	Opening the LTI Viewer Preference Editor
	Units Pane
	Style Pane
	Options Pane
	Parameters Pane

	Graphical Tuning Window Preferences Editor
	Opening the Graphical Tuning Window Preferences Editor
	Units Pane
	Style Pane
	Grids Panel
	Fonts Panel
	Colors Panel

	Options Pane
	Line Colors Pane

	Customizing Response Plot Properties
	Introduction
	Response Plots Property Editor
	Overview of Response Plots Property Editor
	Labels Pane
	Limits Pane
	Units Pane
	Style Pane
	Options Pane

	Property Editing for Subplots
	Customizing Plots Inside the SISO Design Tool
	Overview of Customizing SISO Design Tool Plots
	Root Locus Property Editor
	Labels Pane
	Limits Pane
	Options Pane

	Open-Loop Bode Property Editor
	Labels Pane
	Limits Pane

	Open-Loop Nichols Property Editor
	Labels Pane
	Limits Pane

	Prefilter Bode Property Editor

	Customizing Plots from the Command Line
	Ways to Customize Plots
	Using Plot and Plot Options Handles
	Obtaining Plot Handles
	Obtaining Plot Options Handles
	Overview of Plot Options Handles
	Retrieving a Handle
	Creating a Handle
	Which Properties Can You Modify?

	Examples of Customizing Plots from the Command Line
	Manipulating Plot Options Handles
	Changing Plot Units
	Create Plots Using Existing Plot Options Handle
	Creating a Default Plot Options Handle
	Using Dot Notation Like a Structure
	Setting Property Pairs in setoptions

	Properties and Values Reference
	Property/Value Pairs Common to All Response Plots
	Bode Plots
	Hankel Singular Values
	Nichols Plots
	Nyquist Charts
	Pole/Zero Maps
	Sigma Plots
	Time Response Plots

	Property Organization Reference

	Design Case Studies
	Yaw Damper for a 747 Jet Transport
	Overview of this Case Study
	Creating the Jet Model
	Computing Open-Loop Eigenvalues
	Open-Loop Analysis
	Root Locus Design
	Washout Filter Design

	Hard-Disk Read/Write Head Controller
	Overview of this Case Study
	Creating the Read/Write Head Model
	Model Discretization
	Adding a Compensator Gain
	Adding a Lead Network
	Design Analysis

	LQG Regulation: Rolling Mill Example
	Overview of this Case Study
	Process and Disturbance Models
	Model Data for the x-Axis
	Model Data for the y-Axis

	LQG Design for the x-Axis
	LQG Design for the y-Axis
	Cross-Coupling Between Axes
	MIMO LQG Design

	Kalman Filtering
	Overview of this Case Study
	Discrete Kalman Filter
	Steady-State Design
	Time-Varying Kalman Filter
	Time-Varying Design
	References

	Reliable Computations
	Introduction
	Requirements for Obtaining a Numerically Accurate Answer
	When You Can Accurately Use Unreliable Tools

	Conditioning and Numerical Stability
	Conditioning
	Numerical Stability

	Choice of LTI Model
	Computational Reliability of Different Model Types
	State Space
	Transfer Function
	Zero-Pole-Gain Models

	Scaling
	Summary
	References

	SISO Design Tool
	Overview of the SISO Design Tool
	Opening the SISO Design Tool
	Using the SISO Design Task Node
	The SISO Design Task Node
	SISO Design Task Node Menu Bar
	File Menu Options
	Edit Menu Options
	Buttons Available From Any Pane

	Using the SISO Design Task in the Controls & Estimation Tools Ma
	Architecture
	Modifying Block Diagram Structure
	Configuring Loops
	Importing Models
	Changing Sample Times

	Compensator Editor
	Graphical Tuning
	Configuring Design Plots for the Graphical Tuning Window
	Selecting New Loops to Tune
	Refocusing on the Graphical Tuning Window

	Analysis Plots
	Customizing Loop Responses
	Adding New Response Plots
	Opening or Changing the Focus to the LTI Viewer

	Automated Tuning
	Stability of an Effective Plant for Automated Tuning
	Generic Work Flow
	Optimization-Based Tuning
	PID Tuning
	Internal Model Control (IMC) Tuning
	LQG Synthesis
	Loop Shaping

	SISO Design Task Graphical Tuning Window
	Using the Graphical Tuning Window Menu Bar
	Overview of the Graphical Tuning Window Menu Bar
	File
	Import
	Export
	Save Session
	Load Session
	Toolbox Preferences
	Print
	Print to Figure
	Close

	Edit
	Undo and Redo
	Tuned Parameters
	SISO Tool Preferences

	View
	Design Plots Configuration
	Closed-Loop Poles
	Design History

	Analysis
	Common Response Plots
	Other Loop Responses

	Tools
	Continuous/Discrete Conversions
	Draw Simulink Diagram

	Window
	Help

	Using the Graphical Tuning Window Toolbar
	Using the Right-Click Menus in the Graphical Tuning Window
	Overview of the Right-Click Menus
	Add Pole/Zero
	Example: Adding a Complex Pair of Poles

	Delete Pole/Zero
	Edit Compensator
	Gain Target
	Show
	Design Requirements
	Design Requirements for the Root Locus
	Example: Adding Damping Ratio Design Requirements
	Design Requirements for Open- and Closed-Loop Bode Diagrams
	Example: Adding Upper Gain Limits
	Design Requirements for Open-Loop Nichols Plots
	Example: Adding a Closed-Loop Peak Gain Design Requirement
	Editing Design Requirements
	Deleting Design Requirements

	Grid
	Full View
	Properties
	Select Compensator
	Status Pane

	LTI Viewer for SISO Design Task Design Requirements
	Overview of LTI Viewer Design Requirements
	Available Design Requirements in the LTI Viewer
	Example: Time Domain Requirement

	LTI Viewer
	Basic LTI Viewer Tasks
	Using the Right-Click Menu in the LTI Viewer
	Overview of the Right-Click Menu
	Setting Characteristics of Response Plots
	Step Response
	Impulse Response
	Bode Diagram
	Bode Magnitude
	Nyquist Diagrams
	Nichols Charts
	Singular Values
	Pole/Zero and I/O Pole/Zero

	Adding Design Requirements
	Choosing Step Response Specifications

	Importing, Exporting, and Deleting Models in the LTI Viewer
	Importing Models
	Exporting Models
	Deleting Models

	Selecting Response Types
	Methods for Selecting Response Types
	Right Click Menu: Plot Type
	Plot Configurations Window
	Line Styles Editor
	Setting Preferences
	Ordering Properties

	Analyzing MIMO Models
	Overview of Analyzing MIMO Models
	Array Selector
	Arrays
	Selection Criteria

	I/O Grouping for MIMO Models
	Selecting I/O Pairs

	Customizing the LTI Viewer
	Overview of Customizing the LTI Viewer
	LTI Viewer Preferences Editor

	Index

	tables
	Creating LTI Models
	Converting LTI Models
	Data Format for the Argument Response in FRD Models
	LTI Properties Common to All LTI Objects
	Optional Unit Conversions for Response Plots
	Response Characteristic Options for Response Plots
	Functions That Return the Plot Handle
	Functions for Creating Plot Options Handles
	Title
	X Label
	Y Label
	Tick Label
	Grid and Axis Limits
	I/O Grouping
	Input Labels
	Output Labels
	Input/Output Visible

